Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 5142 KiB  
Article
Pyramidal Framework: Guidance for the Next Generation of GIS Spatial-Temporal Models
by Cyril Carré and Younes Hamdani
ISPRS Int. J. Geo-Inf. 2021, 10(3), 188; https://doi.org/10.3390/ijgi10030188 - 22 Mar 2021
Cited by 2 | Viewed by 3741
Abstract
Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a [...] Read more.
Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling. Full article
(This article belongs to the Special Issue Spatio-Temporal Models and Geo-Technologies)
Show Figures

Figure 1

21 pages, 16896 KiB  
Article
A Decentralized Semantic Reasoning Approach for the Detection and Representation of Continuous Spatial Dynamic Phenomena in Wireless Sensor Networks
by Roger Cesarié Ntankouo Njila, Mir Abolfazl Mostafavi and Jean Brodeur
ISPRS Int. J. Geo-Inf. 2021, 10(3), 182; https://doi.org/10.3390/ijgi10030182 - 19 Mar 2021
Cited by 4 | Viewed by 3114
Abstract
In this paper, we propose a decentralized semantic reasoning approach for modeling vague spatial objects from sensor network data describing vague shape phenomena, such as forest fire, air pollution, traffic noise, etc. This is a challenging problem as it necessitates appropriate aggregation of [...] Read more.
In this paper, we propose a decentralized semantic reasoning approach for modeling vague spatial objects from sensor network data describing vague shape phenomena, such as forest fire, air pollution, traffic noise, etc. This is a challenging problem as it necessitates appropriate aggregation of sensor data and their update with respect to the evolution of the state of the phenomena to be represented. Sensor data are generally poorly provided in terms of semantic information. Hence, the proposed approach starts with building a knowledge base integrating sensor and domain ontologies and then uses fuzzy rules to extract three-valued spatial qualitative information expressing the relative position of each sensor with respect to the monitored phenomenon’s extent. The observed phenomena are modeled using a fuzzy-crisp type spatial object made of a kernel and a conjecture part, which is a more realistic spatial representation for such vague shape environmental phenomena. The second step of our approach uses decentralized computing techniques to infer boundary detection and vertices for the kernel and conjecture parts of spatial objects using fuzzy IF-THEN rules. Finally, we present a case study for urban noise pollution monitoring by a sensor network, which is implemented in Netlogo to illustrate the validity of the proposed approach. Full article
(This article belongs to the Special Issue Applications of Discrete and Computational Geometry to Geoprocessing)
Show Figures

Figure 1

33 pages, 651 KiB  
Review
Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations
by Timothy Nyerges, John A. Gallo, Steven D. Prager, Keith M. Reynolds, Philip J. Murphy and WenWen Li
ISPRS Int. J. Geo-Inf. 2021, 10(3), 179; https://doi.org/10.3390/ijgi10030179 - 18 Mar 2021
Cited by 2 | Viewed by 2919
Abstract
This paper synthesizes vulnerability, risk, resilience, and sustainability (VRRS) in a way that can be used for decision evaluations about sustainable systems, whether such systems are called coupled natural–human systems, social–ecological systems, coupled human–environment systems, and/or hazards influencing global environmental change, all considered [...] Read more.
This paper synthesizes vulnerability, risk, resilience, and sustainability (VRRS) in a way that can be used for decision evaluations about sustainable systems, whether such systems are called coupled natural–human systems, social–ecological systems, coupled human–environment systems, and/or hazards influencing global environmental change, all considered geospatial open systems. Evaluations of V-R-R-S as separate concepts for complex decision problems are important, but more insightful when synthesized for improving integrated decision priorities based on trade-offs of V-R-R-S objectives. A synthesis concept, called VRRSability, provides an overarching perspective that elucidates Tier 2 of a previously developed four-tier framework for organizing measurement-informed ontology and epistemology for sustainability information representation (MOESIR). The new synthesis deepens the MOESIR framework to address VRRSability information representation and clarifies the Tier 2 layer of abstraction. This VRRSability synthesis, composed of 13 components (several with sub-components), offers a controlled vocabulary as the basis of a conceptual framework for organizing workflow assessment and intervention strategies as part of geoinformation decision support software. Researchers, practitioners, and machine learning algorithms can use the vocabulary results for characterizing functional performance relationships between elements of geospatial open systems and the computing technology systems used for evaluating them within a context of complex sustainable systems. Full article
(This article belongs to the Special Issue Geospatial Open Systems)
Show Figures

Figure 1

16 pages, 5407 KiB  
Article
Consideration of Uncertainty Information in Accessibility Analyses for an Effective Use of Urban Infrastructures
by Jochen Schiewe and Martin Knura
ISPRS Int. J. Geo-Inf. 2021, 10(3), 171; https://doi.org/10.3390/ijgi10030171 - 16 Mar 2021
Cited by 1 | Viewed by 2175
Abstract
Accessibility analyses are an essential step in the evaluation and planning of urban infrastructures such as transport or pipeline networks. However, these studies generally produce sharply defined lines (called isovarones) or areas (called isovarone areas) that represent the same or similar accessibility. Uncertainties [...] Read more.
Accessibility analyses are an essential step in the evaluation and planning of urban infrastructures such as transport or pipeline networks. However, these studies generally produce sharply defined lines (called isovarones) or areas (called isovarone areas) that represent the same or similar accessibility. Uncertainties in the input data are usually not taken into account. The aim of this contribution is, therefore, to set up a structured framework that describes the integration of uncertainty information for accessibility analyses. This framework takes uncertainties in the input data, in the processing step, in the target variables, and in the final visualization into account. Particular attention is paid, on the one hand, to the impact of the uncertainties in the target values, as these are key factors for reasoning and decision making. On the other hand, the visualization component is emphasized by applying a dichotomous classification of uncertainty visualization methods. This framework leads to a large set of possible combinations of uncertainty categories. Five selected examples that have been generated with a new software tool and that cover important combinations are presented and discussed. Full article
(This article belongs to the Special Issue Geo-Information for Developing Urban Infrastructures)
Show Figures

Figure 1

20 pages, 3189 KiB  
Article
Building a Large-Scale Micro-Simulation Transport Scenario Using Big Data
by Joerg Schweizer, Cristian Poliziani, Federico Rupi, Davide Morgano and Mattia Magi
ISPRS Int. J. Geo-Inf. 2021, 10(3), 165; https://doi.org/10.3390/ijgi10030165 - 14 Mar 2021
Cited by 22 | Viewed by 4796
Abstract
A large-scale agent-based microsimulation scenario including the transport modes car, bus, bicycle, scooter, and pedestrian, is built and validated for the city of Bologna (Italy) during the morning peak hour. Large-scale microsimulations enable the evaluation of city-wide effects of novel and complex transport [...] Read more.
A large-scale agent-based microsimulation scenario including the transport modes car, bus, bicycle, scooter, and pedestrian, is built and validated for the city of Bologna (Italy) during the morning peak hour. Large-scale microsimulations enable the evaluation of city-wide effects of novel and complex transport technologies and services, such as intelligent traffic lights or shared autonomous vehicles. Large-scale microsimulations can be seen as an interdisciplinary project where transport planners and technology developers can work together on the same scenario; big data from OpenStreetMap, traffic surveys, GPS traces, traffic counts and transit details are merged into a unique transport scenario. The employed activity-based demand model is able to simulate and evaluate door-to-door trip times while testing different mobility strategies. Indeed, a utility-based mode choice model is calibrated that matches the official modal split. The scenario is implemented and analyzed with the software SUMOPy/SUMO which is an open source software, available on GitHub. The simulated traffic flows are compared with flows from traffic counters using different indicators. The determination coefficient has been 0.7 for larger roads (width greater than seven meters). The present work shows that it is possible to build realistic microsimulation scenarios for larger urban areas. A higher precision of the results could be achieved by using more coherent data and by merging different data sources. Full article
Show Figures

Figure 1

20 pages, 5236 KiB  
Article
The Role of Spatio-Temporal Information to Govern the COVID-19 Pandemic: A European Perspective
by Hartmut Müller and Marije Louwsma
ISPRS Int. J. Geo-Inf. 2021, 10(3), 166; https://doi.org/10.3390/ijgi10030166 - 14 Mar 2021
Cited by 4 | Viewed by 2789
Abstract
The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of [...] Read more.
The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of spatio-temporal information in governing the pandemic in the European Union and its member states. The European Nomenclature of Territorial Units for Statistics (NUTS) system and selected national dashboards from member states were assessed to analyze which spatio-temporal information was used, how the information was visualized and whether this changed over the course of the pandemic. Initially, member states focused on their own jurisdiction by creating national dashboards to monitor the pandemic. Information between member states was not aligned. Producing reliable data and timeliness reporting was problematic, just like selecting indictors to monitor the spatial distribution and intensity of the outbreak. Over the course of the pandemic, with more knowledge about the virus and its characteristics, interventions of member states to govern the outbreak were better aligned at the European level. However, further integration and alignment of public health data, statistical data and spatio-temporal data could provide even better information for governments and actors involved in managing the outbreak, both at national and supra-national level. The Infrastructure for Spatial Information in Europe (INSPIRE) initiative and the NUTS system provide a framework to guide future integration and extension of existing systems. Full article
(This article belongs to the Special Issue Spatio-Temporal Models and Geo-Technologies)
Show Figures

Figure 1

16 pages, 2309 KiB  
Article
Effectiveness of Memorizing an Animated Route—Comparing Satellite and Road Map Differences in the Eye-Tracking Study
by Paweł Cybulski
ISPRS Int. J. Geo-Inf. 2021, 10(3), 159; https://doi.org/10.3390/ijgi10030159 - 12 Mar 2021
Cited by 9 | Viewed by 2931
Abstract
There is no consensus on the importance of satellite images in the process of memorizing a route from a map image, especially if the route is displayed on the Internet using dynamic (animated) cartographic visualization. In modern dynamic maps built with JavaScript APIs, [...] Read more.
There is no consensus on the importance of satellite images in the process of memorizing a route from a map image, especially if the route is displayed on the Internet using dynamic (animated) cartographic visualization. In modern dynamic maps built with JavaScript APIs, background layers can be easily altered by map users. The animation attracts people’s attention better than static images, but it causes some perceptual problems. This study examined the influence of the number of turns on the effectiveness (correctness) and efficiency of memorizing the animated route on different cartographic backgrounds. The routes of three difficulty levels, based on satellite and road background, were compared. The results show that the satellite background was not a significant factor influencing the efficiency and effectiveness of route memorizing. Recordings of the eye movement confirmed this. The study reveals that there were intergroup differences in participants’ visual behavior. Participants who described their spatial abilities as “very good” performed better (in terms of effectiveness and efficiency) in route memorizing tasks. For future research, there is a need to study route variability and its impact on participants’ performance. Moreover, future studies should involve differences in route visualization (e.g., without and with ephemeral or permanent trail). Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

32 pages, 15184 KiB  
Article
Development after Displacement: Evaluating the Utility of OpenStreetMap Data for Monitoring Sustainable Development Goal Progress in Refugee Settlements
by Jamon Van Den Hoek, Hannah K. Friedrich, Anna Ballasiotes, Laura E. R. Peters and David Wrathall
ISPRS Int. J. Geo-Inf. 2021, 10(3), 153; https://doi.org/10.3390/ijgi10030153 - 10 Mar 2021
Cited by 13 | Viewed by 4581
Abstract
In 2015, 193 countries declared their commitment to “leave no one behind” in pursuit of 17 Sustainable Development Goals (SDGs). However, the world’s refugees have been routinely excluded from national censuses and representative surveys, and, as a result, have broadly been overlooked in [...] Read more.
In 2015, 193 countries declared their commitment to “leave no one behind” in pursuit of 17 Sustainable Development Goals (SDGs). However, the world’s refugees have been routinely excluded from national censuses and representative surveys, and, as a result, have broadly been overlooked in SDG evaluations. In this study, we examine the potential of OpenStreetMap (OSM) data for monitoring SDG progress in refugee settlements. We collected all available OSM data in 28 refugee and 26 nearby non-refugee settlements in the major refugee-hosting country of Uganda. We created a novel SDG-OSM data model, measured the spatial and temporal coverages of SDG-relevant OSM data across refugee settlements, and compared these results to non-refugee settlements. We found 11 different SDGs represented across 92% (21,950) of OSM data in refugee settlements, compared to 78% (1919 nodes) in non-refugee settlements. However, most data were created three years after refugee arrival, and 81% of OSM data in refugee settlements were never edited, both of which limit the potential for long-term monitoring of SDG progress. In light of our findings, we offer suggestions for improving OSM-driven SDG monitoring in refugee settlements that have relevance for development and humanitarian practitioners and research communities alike. Full article
Show Figures

Graphical abstract

15 pages, 1822 KiB  
Article
Simultaneous Extraction of Road and Centerline from Aerial Images Using a Deep Convolutional Neural Network
by Tamara Alshaikhli, Wen Liu and Yoshihisa Maruyama
ISPRS Int. J. Geo-Inf. 2021, 10(3), 147; https://doi.org/10.3390/ijgi10030147 - 8 Mar 2021
Cited by 6 | Viewed by 1873
Abstract
The extraction of roads and centerlines from aerial imagery is considered an important topic because it contributes to different fields, such as urban planning, transportation engineering, and disaster mitigation. Many researchers have studied this topic as a two-separated task that affects the quality [...] Read more.
The extraction of roads and centerlines from aerial imagery is considered an important topic because it contributes to different fields, such as urban planning, transportation engineering, and disaster mitigation. Many researchers have studied this topic as a two-separated task that affects the quality of extracted roads and centerlines because of the correlation between these two tasks. Accurate road extraction enhances accurate centerline extraction if these two tasks are processed simultaneously. This study proposes a multitask learning scheme using a gated deep convolutional neural network (DCNN) to extract roads and centerlines simultaneously. The DCNN is composed of one encoder and two decoders implemented on the U-Net backbone. The decoders are assigned to extract roads and centerlines from low-resolution feature maps. Before extraction, the images are processed within an encoder to extract the spatial information from a complex, high-resolution image. The encoder consists of the residual blocks (Res-Block) connected to a bridge represented by a Res-Block, and the bridge connects the two identical decoders, which consists of stacking convolutional layers (Conv.layer). Attention gates (AGs) are added to our model to enhance the selection process for the true pixels that represent road or centerline classes. Our model is trained on a dataset of high-resolution aerial images, which is open to the public. The model succeeds in efficiently extracting roads and centerlines compared with other multitask learning models. Full article
Show Figures

Figure 1

15 pages, 6948 KiB  
Article
Interpersonal and Intrapersonal Variabilities in Daily Activity-Travel Patterns: A Networked Spatiotemporal Analysis
by Wenjia Zhang, Chunhan Ji, Hao Yu, Yi Zhao and Yanwei Chai
ISPRS Int. J. Geo-Inf. 2021, 10(3), 148; https://doi.org/10.3390/ijgi10030148 - 8 Mar 2021
Cited by 10 | Viewed by 2771
Abstract
Interpersonal and intrapersonal variabilities are two important perspectives to understand daily travel behaviors, while only a small number of studies incorporate them for understanding human dynamics. This paper employed a network analysis approach to detecting daily activity-travel patterns of 680 Beijing’s residents within [...] Read more.
Interpersonal and intrapersonal variabilities are two important perspectives to understand daily travel behaviors, while only a small number of studies incorporate them for understanding human dynamics. This paper employed a network analysis approach to detecting daily activity-travel patterns of 680 Beijing’s residents within a week and then used a multilevel multinomial logit model to analyze the intrapersonal variability in patterns and the socioeconomic linkages behind them. Results suggest that most activity-travel patterns have significant day-to-day intrapersonal and interpersonal variabilities. This suggests that the application of a typical day of activity-travel behaviors to measure and represent a week’s or even longer-term behaviors may be biased, due to the existence of day-to-day intrapersonal variability. This study also provides a hint for the selection of days of a week to conduct a diary survey for activity pattern mining or travel demand modeling. Full article
(This article belongs to the Special Issue Geospatial Methods in Social and Behavioral Sciences)
Show Figures

Figure 1

17 pages, 3033 KiB  
Article
Effects of Virtual Reality Locomotion Techniques on Distance Estimations
by Julian Keil, Dennis Edler, Denise O’Meara, Annika Korte and Frank Dickmann
ISPRS Int. J. Geo-Inf. 2021, 10(3), 150; https://doi.org/10.3390/ijgi10030150 - 8 Mar 2021
Cited by 40 | Viewed by 5888
Abstract
Mental representations of geographic space are based on knowledge of spatial elements and the spatial relation between these elements. Acquiring such mental representations of space requires assessing distances between pairs of spatial elements. In virtual reality (VR) applications, locomotion techniques based on real-world [...] Read more.
Mental representations of geographic space are based on knowledge of spatial elements and the spatial relation between these elements. Acquiring such mental representations of space requires assessing distances between pairs of spatial elements. In virtual reality (VR) applications, locomotion techniques based on real-world movement are constrained by the size of the available room and the used room scale tracking system. Therefore, many VR applications use additional locomotion techniques such as artificial locomotion (continuous forward movement) or teleporting (“jumping” from one location to another). These locomotion techniques move the user through virtual space based on controller input. However, it has not yet been investigated how different established controller-based locomotion techniques affect distance estimations in VR. In an experiment, we compared distance estimations between artificial locomotion and teleportation before and after a training phase. The results showed that distance estimations in both locomotion conditions improved after the training. Additionally, distance estimations were found to be more accurate when teleportation locomotion was used. Full article
Show Figures

Figure 1

16 pages, 5063 KiB  
Article
The Extended Concept of the Map in View of Modern Geoinformation Products
by Dariusz Gotlib, Robert Olszewski and Georg Gartner
ISPRS Int. J. Geo-Inf. 2021, 10(3), 142; https://doi.org/10.3390/ijgi10030142 - 5 Mar 2021
Cited by 4 | Viewed by 2264
Abstract
In the face of strikingly intense technological development, there have been significant discrepancies in the understanding of the concept of the map; an understanding that is fundamental to cartography and, more broadly, GIScience. The development of electronic products based on geoinformation has caused [...] Read more.
In the face of strikingly intense technological development, there have been significant discrepancies in the understanding of the concept of the map; an understanding that is fundamental to cartography and, more broadly, GIScience. The development of electronic products based on geoinformation has caused a growing need for the systematization of basic concepts, including defining what a map is. In particular, the modification of the idea of the map may profoundly influence the future development of cartography. The comprehensive and innovative use of maps, for example, in location-based service (LBS) applications, may contribute to more in-depth analyses in this area. This article examines how the concept of how the map is used in technological or scientific literature about the latest geoinformation applications, as well as analyzing the survey results that confirm the change in social perception of the concept of the map in cartography. The article also refers to the role of the map in the process of indirect cognition and understanding of geographical space—cognition realized through maps. A social understanding of mapping concepts is evolving and covers the entire spectrum of geoinformation products. It seems that the latest geoinformation solutions, such as navigation applications and, in particular, applications supporting the movement of autonomous vehicles (e.g., self-driving cars), have had a particular impact on the concept of the map. This is confirmed by the results of a survey conducted by the authors on a group of nearly 900 respondents from a variety of countries. The vast majority of users are convinced that the contemporary understanding of the concept of the map is a long way from the classic definition of this concept. Therefore, in the opinion of the authors of this article, it is worth undertaking research that will become a starting point for a discussion about the broader definition of the map in GIScience. Full article
Show Figures

Figure 1

23 pages, 6413 KiB  
Article
Geospatial Queries on Data Collection Using a Common Provenance Model
by Guillem Closa, Joan Masó, Núria Julià and Xavier Pons
ISPRS Int. J. Geo-Inf. 2021, 10(3), 139; https://doi.org/10.3390/ijgi10030139 - 5 Mar 2021
Cited by 3 | Viewed by 2324
Abstract
Lineage information is the part of the metadata that describes “what”, “when”, “who”, “how”, and “where” geospatial data were generated. If it is well-presented and queryable, lineage becomes very useful information for inferring data quality, tracing error sources and increasing trust in geospatial [...] Read more.
Lineage information is the part of the metadata that describes “what”, “when”, “who”, “how”, and “where” geospatial data were generated. If it is well-presented and queryable, lineage becomes very useful information for inferring data quality, tracing error sources and increasing trust in geospatial information. In addition, if the lineage of a collection of datasets can be related and presented together, datasets, process chains, and methodologies can be compared. This paper proposes extending process step lineage descriptions into four explicit levels of abstraction (process run, tool, algorithm and functionality). Including functionalities and algorithm descriptions as a part of lineage provides high-level information that is independent from the details of the software used. Therefore, it is possible to transform lineage metadata that is initially documenting specific processing steps into a reusable workflow that describes a set of operations as a processing chain. This paper presents a system that provides lineage information as a service in a distributed environment. The system is complemented by an integrated provenance web application that is capable of visualizing and querying a provenance graph that is composed by the lineage of a collection of datasets. The International Organization for Standardization (ISO) 19115 standards family with World Wide Web Consortium (W3C) provenance initiative (W3C PROV) were combined in order to integrate provenance of a collection of datasets. To represent lineage elements, the ISO 19115-2 lineage class names were chosen, because they express the names of the geospatial objects that are involved more precisely. The relationship naming conventions of W3C PROV are used to represent relationships among these elements. The elements and relationships are presented in a queryable graph. Full article
(This article belongs to the Special Issue Geospatial Metadata)
Show Figures

Figure 1

23 pages, 9574 KiB  
Article
Near Real-Time Semantic View Analysis of 3D City Models in Web Browser
by Juho-Pekka Virtanen, Kaisa Jaalama, Tuulia Puustinen, Arttu Julin, Juha Hyyppä and Hannu Hyyppä
ISPRS Int. J. Geo-Inf. 2021, 10(3), 138; https://doi.org/10.3390/ijgi10030138 - 4 Mar 2021
Cited by 18 | Viewed by 4914
Abstract
3D city models and their browser-based applications have become an increasingly applied tool in the cities. One of their applications is the analysis views and visibility, applicable to property valuation and evaluation of urban green infrastructure. We present a near real-time semantic view [...] Read more.
3D city models and their browser-based applications have become an increasingly applied tool in the cities. One of their applications is the analysis views and visibility, applicable to property valuation and evaluation of urban green infrastructure. We present a near real-time semantic view analysis relying on a 3D city model, implemented in a web browser. The analysis is tested in two alternative use cases: property valuation and evaluation of the urban green infrastructure. The results describe the elements visible from a given location, and can also be applied to object type specific analysis, such as green view index estimation, with the main benefit being the freedom of choosing the point-of-view obtained with the 3D model. Several promising development directions can be identified based on the current implementation and experiment results, including the integration of the semantic view analysis with virtual reality immersive visualization or 3D city model application development platforms. Full article
(This article belongs to the Special Issue Virtual 3D City Models)
Show Figures

Figure 1

20 pages, 8982 KiB  
Article
Transfer Learning of a Deep Learning Model for Exploring Tourists’ Urban Image Using Geotagged Photos
by Youngok Kang, Nahye Cho, Jiyoung Yoon, Soyeon Park and Jiyeon Kim
ISPRS Int. J. Geo-Inf. 2021, 10(3), 137; https://doi.org/10.3390/ijgi10030137 - 4 Mar 2021
Cited by 31 | Viewed by 4488
Abstract
Recently, as computer vision and image processing technologies have rapidly advanced in the artificial intelligence (AI) field, deep learning technologies have been applied in the field of urban and regional study through transfer learning. In the tourism field, studies are emerging to analyze [...] Read more.
Recently, as computer vision and image processing technologies have rapidly advanced in the artificial intelligence (AI) field, deep learning technologies have been applied in the field of urban and regional study through transfer learning. In the tourism field, studies are emerging to analyze the tourists’ urban image by identifying the visual content of photos. However, previous studies have limitations in properly reflecting unique landscape, cultural characteristics, and traditional elements of the region that are prominent in tourism. With the purpose of going beyond these limitations of previous studies, we crawled 168,216 Flickr photos, created 75 scenes and 13 categories as a tourist’ photo classification by analyzing the characteristics of photos posted by tourists and developed a deep learning model by continuously re-training the Inception-v3 model. The final model shows high accuracy of 85.77% for the Top 1 and 95.69% for the Top 5. The final model was applied to the entire dataset to analyze the regions of attraction and the tourists’ urban image in Seoul. We found that tourists feel attracted to Seoul where the modern features such as skyscrapers and uniquely designed architectures and traditional features such as palaces and cultural elements are mixed together in the city. This work demonstrates a tourist photo classification suitable for local characteristics and the process of re-training a deep learning model to effectively classify a large volume of tourists’ photos. Full article
(This article belongs to the Special Issue Geospatial Artificial Intelligence)
Show Figures

Figure 1

35 pages, 4586 KiB  
Article
Evaluating Social Distancing Measures and Their Association with the Covid-19 Pandemic in South America
by Gisliany Lillian Alves de Oliveira, Luciana Lima, Ivanovitch Silva, Marcel da Câmara Ribeiro-Dantas, Kayo Henrique Monteiro and Patricia Takako Endo
ISPRS Int. J. Geo-Inf. 2021, 10(3), 121; https://doi.org/10.3390/ijgi10030121 - 1 Mar 2021
Cited by 16 | Viewed by 4674
Abstract
Social distancing is a powerful non-pharmaceutical intervention used as a way to slow the spread of the SARS-CoV-2 virus around the world since the end of 2019 in China. Taking that into account, this work aimed to identify variations on population mobility in [...] Read more.
Social distancing is a powerful non-pharmaceutical intervention used as a way to slow the spread of the SARS-CoV-2 virus around the world since the end of 2019 in China. Taking that into account, this work aimed to identify variations on population mobility in South America during the pandemic (15 February to 27 October 2020). We used a data-driven approach to create a community mobility index from the Google Covid-19 Community Mobility and relate it to the Covid stringency index from Oxford Covid-19 Government Response Tracker (OxCGRT). Two hypotheses were established: countries which have adopted stricter social distancing measures have also a lower level of circulation (H1), and mobility is occurring randomly in space (H2). Considering a transient period, a low capacity of governments to respond to the pandemic with more stringent measures of social distancing was observed at the beginning of the crisis. In turn, considering a steady-state period, the results showed an inverse relationship between the Covid stringency index and the community mobility index for at least three countries (H1 rejected). Regarding the spatial analysis, global and local Moran indices revealed regional mobility patterns for Argentina, Brazil, and Chile (H1 rejected). In Brazil, the absence of coordinated policies between the federal government and states regarding social distancing may have played an important role for several and extensive clusters formation. On the other hand, the results for Argentina and Chile could be signals for the difficulties of governments in keeping their population under control, and for long periods, even under stricter decrees. Full article
(This article belongs to the Collection Spatial Components of COVID-19 Pandemic)
Show Figures

Figure 1

20 pages, 8349 KiB  
Article
Twitter Use in Hurricane Isaac and Its Implications for Disaster Resilience
by Kejin Wang, Nina S. N. Lam, Lei Zou and Volodymyr Mihunov
ISPRS Int. J. Geo-Inf. 2021, 10(3), 116; https://doi.org/10.3390/ijgi10030116 - 27 Feb 2021
Cited by 21 | Viewed by 3264
Abstract
Disaster resilience is the capacity of a community to “bounce back” from disastrous events. Most studies rely on traditional data such as census data to study community resilience. With increasing use of social media, new data sources such as Twitter could be utilized [...] Read more.
Disaster resilience is the capacity of a community to “bounce back” from disastrous events. Most studies rely on traditional data such as census data to study community resilience. With increasing use of social media, new data sources such as Twitter could be utilized to monitor human response during different phases of disasters to better understand resilience. An important research question is: Does Twitter use correlate with disaster resilience? Specifically, will communities with more disaster-related Twitter uses be more resilient to disasters, presumably because they have better situational awareness? The underlying issue is that if there are social and geographical disparities in Twitter use, how will such disparities affect communities’ resilience to disasters? This study examines the relationship between Twitter use and community resilience during Hurricane Isaac, which hit Louisiana and Mississippi in August 2012. First, we applied the resilience inference measurement (RIM) model to calculate the resilience indices of 146 affected counties. Second, we analyzed Twitter use and their sentiment patterns through the three phases of Hurricane Isaac—preparedness, response, and recovery. Third, we correlated Twitter use density and sentiment scores with the resilience scores and major social–environmental variables to test whether significant geographical and social disparities in Twitter use existed through the three phases of disaster management. Significant positive correlations were found between Twitter use density and resilience indicators, confirming that communities with higher resilience capacity, which are characterized by better social–environmental conditions, tend to have higher Twitter use. These results imply that Twitter use during disasters could be improved to increase the resilience of affected communities. On the other hand, no significant correlations were found between sentiment scores and resilience indicators, suggesting that further research on sentiment analysis may be needed. Full article
(This article belongs to the Special Issue Applications and Implications in Geosocial Media Monitoring)
Show Figures

Figure 1

25 pages, 13164 KiB  
Article
A Unified Methodology for the Generalisation of the Geometry of Features
by Anna Barańska, Joanna Bac-Bronowicz, Dorota Dejniak, Stanisław Lewiński, Artur Krawczyk and Tadeusz Chrobak
ISPRS Int. J. Geo-Inf. 2021, 10(3), 107; https://doi.org/10.3390/ijgi10030107 - 25 Feb 2021
Cited by 2 | Viewed by 2257
Abstract
The development of generalisation (simplification) methods for the geometry of features in digital cartography in most cases involves the improvement of existing algorithms without their validation with respect to the similarity of feature geometry before and after the process. It also consists of [...] Read more.
The development of generalisation (simplification) methods for the geometry of features in digital cartography in most cases involves the improvement of existing algorithms without their validation with respect to the similarity of feature geometry before and after the process. It also consists of the assessment of results from the algorithms, i.e., characteristics that are indispensable for automatic generalisation. The preparation of a fully automatic generalisation for spatial data requires certain standards, as well as unique and verifiable algorithms for particular groups of features. This enables cartographers to draw features from these databases to be used directly on the maps. As a result, collected data and their generalised unique counterparts at various scales should constitute standardised sets, as well as their updating procedures. This paper proposes a solution which consists in contractive self-mapping (contractor for scale s = 1) that fulfils the assumptions of the Banach fixed-point theorem. The method of generalisation of feature geometry that uses the contractive self-mapping approach is well justified due to the fact that a single update of source data can be applied to all scales simultaneously. Feature data at every scale s < 1 are generalised through contractive mapping, which leads to a unique solution. Further generalisation of the feature is carried out on larger scale spatial data (not necessarily source data), which reduces the time and cost of the new elaboration. The main part of this article is the theoretical presentation of objectifying the complex process of the generalisation of the geometry of a feature. The use of the inherent characteristics of metric spaces, narrowing mappings, Lipschitz and Cauchy conditions, Salishchev measures, and Banach theorems ensure the uniqueness of the generalisation process. Their application to generalisation makes this process objective, as it ensures that there is a single solution for portraying the generalised features at each scale. The present study is dedicated to researchers concerned with the theory of cartography. Full article
(This article belongs to the Special Issue Spatial Optimization and GIS)
Show Figures

Figure 1

32 pages, 12094 KiB  
Article
TouchTerrain—3D Printable Terrain Models
by Chris Harding, Franek Hasiuk and Aaron Wood
ISPRS Int. J. Geo-Inf. 2021, 10(3), 108; https://doi.org/10.3390/ijgi10030108 - 25 Feb 2021
Cited by 5 | Viewed by 6274
Abstract
TouchTerrain is a simple-to-use web application that makes creating 3D printable terrain models from anywhere on the globe accessible to a wide range of users, from people with no GIS expertise to power users. For coders, a Python-based standalone version is available from [...] Read more.
TouchTerrain is a simple-to-use web application that makes creating 3D printable terrain models from anywhere on the globe accessible to a wide range of users, from people with no GIS expertise to power users. For coders, a Python-based standalone version is available from the open-source project’s GitHub repository. Analyzing 18 months of web analytics gave us a preliminary look at who is using the TouchTerrain web application and what their models are used for; and to map out what terrains on the globe they chose to 3D print. From July 2019 to January 2021, more than 20,000 terrain models were downloaded. Models were created for many different use cases, including education, research, outdoor activities and crafting mementos. Most models were realized with 3D printers, but a sizable minority used CNC machines. Our own experiences with using 3D printed terrain in a university setting have been very positive so far. Anecdotal evidence points to the strong potential for 3D printed terrain models to provide significant help with specific map-related tasks. For the introductory geology laboratory, 3D printed models were used as a form of “training wheels” to aid beginning students in learning to read contour maps, which are still an important tool for geology. Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

21 pages, 6287 KiB  
Article
Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization
by Tingting Pan, Yu Zhang, Fenzhen Su, Vincent Lyne, Fei Cheng and Han Xiao
ISPRS Int. J. Geo-Inf. 2021, 10(2), 100; https://doi.org/10.3390/ijgi10020100 - 22 Feb 2021
Cited by 21 | Viewed by 2700
Abstract
Practical efficient regional land-use planning requires planners to balance competing uses, regional policies, spatial compatibilities, and priorities across the social, economic, and ecological domains. Genetic algorithm optimization has progressed complex planning, but challenges remain in developing practical alternatives to random initialization, genetic mutations, [...] Read more.
Practical efficient regional land-use planning requires planners to balance competing uses, regional policies, spatial compatibilities, and priorities across the social, economic, and ecological domains. Genetic algorithm optimization has progressed complex planning, but challenges remain in developing practical alternatives to random initialization, genetic mutations, and to pragmatically balance competing objectives. To meet these practical needs, we developed a Land use Intensity-restricted Multi-objective Spatial Optimization (LIr-MSO) model with more realistic patch size initialization, novel mutation, elite strategies, and objectives balanced via nominalizations and weightings. We tested the model for Dapeng, China where experiments compared comprehensive fitness (across conversion cost, Gross Domestic Product (GDP), ecosystem services value, compactness, and conflict degree) with three contrast experiments, in which changes were separately made in the initialization and mutation. The comprehensive model gave superior fitness compared to the contrast experiments. Iterations progressed rapidly to near-optimality, but final convergence involved much slower parent–offspring mutations. Tradeoffs between conversion cost and compactness were strongest, and conflict degree improved in part as an emergent property of the spatial social connectedness built into our algorithm. Observations of rapid iteration to near-optimality with our model can facilitate interactive simulations, not possible with current models, involving land-use planners and regional managers. Full article
Show Figures

Figure 1

33 pages, 4090 KiB  
Review
Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review
by Andreas Tsatsaris, Kleomenis Kalogeropoulos, Nikolaos Stathopoulos, Panagiota Louka, Konstantinos Tsanakas, Demetrios E. Tsesmelis, Vassilios Krassanakis, George P. Petropoulos, Vasilis Pappas and Christos Chalkias
ISPRS Int. J. Geo-Inf. 2021, 10(2), 94; https://doi.org/10.3390/ijgi10020094 - 21 Feb 2021
Cited by 31 | Viewed by 5710
Abstract
Human activities and climate change constitute the contemporary catalyst for natural processes and their impacts, i.e., geo-environmental hazards. Globally, natural catastrophic phenomena and hazards, such as drought, soil erosion, quantitative and qualitative degradation of groundwater, frost, flooding, sea level rise, etc., are intensified [...] Read more.
Human activities and climate change constitute the contemporary catalyst for natural processes and their impacts, i.e., geo-environmental hazards. Globally, natural catastrophic phenomena and hazards, such as drought, soil erosion, quantitative and qualitative degradation of groundwater, frost, flooding, sea level rise, etc., are intensified by anthropogenic factors. Thus, they present rapid increase in intensity, frequency of occurrence, spatial density, and significant spread of the areas of occurrence. The impact of these phenomena is devastating to human life and to global economies, private holdings, infrastructure, etc., while in a wider context it has a very negative effect on the social, environmental, and economic status of the affected region. Geospatial technologies including Geographic Information Systems, Remote Sensing—Earth Observation as well as related spatial data analysis tools, models, databases, contribute nowadays significantly in predicting, preventing, researching, addressing, rehabilitating, and managing these phenomena and their effects. This review attempts to mark the most devastating geo-hazards from the view of environmental monitoring, covering the state of the art in the use of geospatial technologies in that respect. It also defines the main challenge of this new era which is nothing more than the fictitious exploitation of the information produced by the environmental monitoring so that the necessary policies are taken in the direction of a sustainable future. The review highlights the potential and increasing added value of geographic information as a means to support environmental monitoring in the face of climate change. The growth in geographic information seems to be rapidly accelerated due to the technological and scientific developments that will continue with exponential progress in the years to come. Nonetheless, as it is also highlighted in this review continuous monitoring of the environment is subject to an interdisciplinary approach and contains an amount of actions that cover both the development of natural phenomena and their catastrophic effects mostly due to climate change. Full article
(This article belongs to the Special Issue GIS-Based Analysis for Quality of Life and Environmental Monitoring)
Show Figures

Figure 1

17 pages, 9586 KiB  
Article
Digital Graphic Documentation and Architectural Heritage: Deformations in a 16th-Century Ceiling of the Pinelo Palace in Seville (Spain)
by Juan Francisco Reinoso-Gordo, Antonio Gámiz-Gordo and Pedro Barrero-Ortega
ISPRS Int. J. Geo-Inf. 2021, 10(2), 85; https://doi.org/10.3390/ijgi10020085 - 19 Feb 2021
Cited by 10 | Viewed by 2964
Abstract
Suitable graphic documentation is essential to ascertain and conserve architectural heritage. For the first time, accurate digital images are provided of a 16th-century wooden ceiling, composed of geometric interlacing patterns, in the Pinelo Palace in Seville. Today, this ceiling suffers from significant deformation. [...] Read more.
Suitable graphic documentation is essential to ascertain and conserve architectural heritage. For the first time, accurate digital images are provided of a 16th-century wooden ceiling, composed of geometric interlacing patterns, in the Pinelo Palace in Seville. Today, this ceiling suffers from significant deformation. Although there are many publications on the digital documentation of architectural heritage, no graphic studies on this type of deformed ceilings have been presented. This study starts by providing data on the palace history concerning the design of geometric interlacing patterns in carpentry according to the 1633 book by López de Arenas, and on the ceiling consolidation in the 20th century. Images were then obtained using two complementary procedures: from a 3D laser scanner, which offers metric data on deformations; and from photogrammetry, which facilitates the visualisation of details. In this way, this type of heritage is documented in an innovative graphic approach, which is essential for its conservation and/or restoration with scientific foundations and also to disseminate a reliable digital image of the most beautiful ceiling of this Renaissance palace in southern Europe. Full article
(This article belongs to the Special Issue 3D Modeling and GIS for Historical Sites Reconstruction)
Show Figures

Figure 1

20 pages, 3352 KiB  
Article
Do Different Map Types Support Map Reading Equally? Comparing Choropleth, Graduated Symbols, and Isoline Maps for Map Use Tasks
by Katarzyna Słomska-Przech and Izabela Małgorzata Gołębiowska
ISPRS Int. J. Geo-Inf. 2021, 10(2), 69; https://doi.org/10.3390/ijgi10020069 - 10 Feb 2021
Cited by 9 | Viewed by 5223
Abstract
It is acknowledged that various types of thematic maps emphasize different aspects of mapped phenomena and thus support different map users’ tasks. To provide empirical evidence, a user study with 366 participants was carried out comparing three map types showing the same input [...] Read more.
It is acknowledged that various types of thematic maps emphasize different aspects of mapped phenomena and thus support different map users’ tasks. To provide empirical evidence, a user study with 366 participants was carried out comparing three map types showing the same input data. The aim of the study is to compare the effect of using choropleth, graduated symbols, and isoline maps to solve basic map user tasks. Three metrics were examined: two performance metrics (answer accuracy and time) and one subjective metric (difficulty). The results showed that the performance metrics differed between the analyzed map types, and better performances were recorded using the choropleth map. It was also proven that map users find the most commonly applied type of the map, choropleth map, as the easiest. In addition, the subjective metric matched the performance metrics. We conclude with the statement that the choropleth map can be a sufficient solution for solving various tasks. However, it should be remembered that making this type of map correctly may seem easy, but it is not. Moreover, we believe that the richness of thematic cartography should not be abandoned, and work should not be limited to one favorable map type only. Full article
(This article belongs to the Special Issue Cartographic Communication of Big Data)
Show Figures

Figure 1

25 pages, 4285 KiB  
Review
Machine Learning Approaches to Bike-Sharing Systems: A Systematic Literature Review
by Vitória Albuquerque, Miguel Sales Dias and Fernando Bacao
ISPRS Int. J. Geo-Inf. 2021, 10(2), 62; https://doi.org/10.3390/ijgi10020062 - 2 Feb 2021
Cited by 25 | Viewed by 6244
Abstract
Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and [...] Read more.
Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and introduces a corresponding systematic literature review, focusing on machine learning techniques’ contributions applied to bike-sharing systems to improve cities’ mobility. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) method was adopted to identify specific factors that influence bike-sharing systems, resulting in an analysis of 35 papers published between 2015 and 2019, creating an outline for future research. By means of systematic literature review and bibliometric analysis, machine learning algorithms were identified in two groups: classification and prediction. Full article
Show Figures

Figure 1

21 pages, 4047 KiB  
Article
A National Examination of the Spatial Extent and Similarity of Offenders’ Activity Spaces Using Police Data
by Sophie Curtis-Ham, Wim Bernasco, Oleg N. Medvedev and Devon L. L. Polaschek
ISPRS Int. J. Geo-Inf. 2021, 10(2), 47; https://doi.org/10.3390/ijgi10020047 - 23 Jan 2021
Cited by 11 | Viewed by 4299
Abstract
It is well established that offenders’ routine activity locations (nodes) shape their crime locations, but research examining the geography of offenders’ routine activity spaces has to date largely been limited to a few core nodes such as homes and prior offense locations, and [...] Read more.
It is well established that offenders’ routine activity locations (nodes) shape their crime locations, but research examining the geography of offenders’ routine activity spaces has to date largely been limited to a few core nodes such as homes and prior offense locations, and to small study areas. This paper explores the utility of police data to provide novel insights into the spatial extent of, and overlap between, individual offenders’ activity spaces. It includes a wider set of activity nodes (including relatives’ homes, schools, and non-crime incidents) and broadens the geographical scale to a national level, by comparison to previous studies. Using a police dataset including n = 60,229 burglary, robbery, and extra-familial sex offenders in New Zealand, a wide range of activity nodes were present for most burglary and robbery offenders, but fewer for sex offenders, reflecting sparser histories of police contact. In a novel test of the criminal profiling assumptions of homology and differentiation in a spatial context, we find that those who offend in nearby locations tend to share more activity space than those who offend further apart. However, in finding many offenders’ activity spaces span wide geographic distances, we highlight challenges for crime location choice research and geographic profiling practice. Full article
(This article belongs to the Special Issue Geographic Crime Analysis)
Show Figures

Figure 1

30 pages, 11356 KiB  
Article
Crowdsourcing without Data Bias: Building a Quality Assurance System for Air Pollution Symptom Mapping
by Marta Samulowska, Szymon Chmielewski, Edwin Raczko, Michał Lupa, Dorota Myszkowska and Bogdan Zagajewski
ISPRS Int. J. Geo-Inf. 2021, 10(2), 46; https://doi.org/10.3390/ijgi10020046 - 22 Jan 2021
Cited by 8 | Viewed by 4616
Abstract
Crowdsourcing is one of the spatial data sources, but due to its unstructured form, the quality of noisy crowd judgments is a challenge. In this study, we address the problem of detecting and removing crowdsourced data bias as a prerequisite for better-quality open-data [...] Read more.
Crowdsourcing is one of the spatial data sources, but due to its unstructured form, the quality of noisy crowd judgments is a challenge. In this study, we address the problem of detecting and removing crowdsourced data bias as a prerequisite for better-quality open-data output. This study aims to find the most robust data quality assurance system (QAs). To achieve this goal, we design logic-based QAs variants and test them on the air quality crowdsourcing database. By extending the paradigm of urban air pollution monitoring from particulate matter concentration levels to air-quality-related health symptom load, the study also builds a new perspective for citizen science (CS) air quality monitoring. The method includes the geospatial web (GeoWeb) platform as well as a QAs based on conditional statements. A four-month crowdsourcing campaign resulted in 1823 outdoor reports, with a rejection rate of up to 28%, depending on the applied. The focus of this study was not on digital sensors’ validation but on eliminating logically inconsistent surveys and technologically incorrect objects. As the QAs effectiveness may depend on the location and society structure, that opens up new cross-border opportunities for replication of the research in other geographical conditions. Full article
(This article belongs to the Special Issue Citizen Science and Geospatial Capacity Building)
Show Figures

Graphical abstract

16 pages, 4611 KiB  
Article
Using Restaurant POI Data to Explore Regional Structure of Food Culture Based on Cuisine Preference
by Shangjing Jiang, Haiping Zhang, Haoran Wang, Lei Zhou and Guoan Tang
ISPRS Int. J. Geo-Inf. 2021, 10(1), 38; https://doi.org/10.3390/ijgi10010038 - 18 Jan 2021
Cited by 11 | Viewed by 4179
Abstract
As a result of the influence of geographical environment and historical heritage, food preference has significant regional differentiation characteristics. However, the spatial structure of food culture represented by the cuisine culture at the regional level has not yet been explored from the perspective [...] Read more.
As a result of the influence of geographical environment and historical heritage, food preference has significant regional differentiation characteristics. However, the spatial structure of food culture represented by the cuisine culture at the regional level has not yet been explored from the perspective of geography. Cultural regionalization is an important way to analyze and understand the spatial structure of food culture. It is of great significance to deeply mine intra-regional homogeneity and scientifically cognize inter-regional cultural characteristics. This study aims to explore such patterns by focusing on the restaurants of the eight most famous cuisines in Mainland China. Initially, the density based geospatial hotspot detector method is proposed to analyze and mapping the spatial quantitative characteristics of the eight major cuisines. A heuristic method for geographical regionalization based on machine learning was used to analyze spatial distribution patterns in accordance with the proportion of these cuisines in each prefecture-level city. Results show that some types of single-category cuisines have a stronger spatial concentration effect in the present, whereas others have a strong diffusion trend. In the comprehensive analysis of multicategory cuisines, the eight major cuisines formed a new structure of geographical regionalization of Chinese cuisine culture. This study is helpful to understand regional structure characteristics of food preference, and the density-based hotspot detector proposed in this paper can also be used in the analysis of other type of point of interest (POI) data. Full article
Show Figures

Figure 1

18 pages, 14253 KiB  
Article
Incorporating Memory-Based Preferences and Point-of-Interest Stickiness into Recommendations in Location-Based Social Networks
by Hang Zhang, Mingxin Gan and Xi Sun
ISPRS Int. J. Geo-Inf. 2021, 10(1), 36; https://doi.org/10.3390/ijgi10010036 - 15 Jan 2021
Cited by 8 | Viewed by 2677
Abstract
In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI [...] Read more.
In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI recommendation methods. In psychological effect-based POI recommendations, the memory-based attenuation of people’s preferences with respect to POIs, e.g., the fact that more attention is paid to POIs that were checked in to recently than those visited earlier, is emphasized. However, the memory effect only reflects the changes in an individual’s check-in trajectory and cannot discover the important POIs that dominate their mobility patterns, which are related to the repeat-visit frequency of an individual at a POI. To solve this problem, in this paper, we developed a novel POI recommendation framework using people’s memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness. First, we used the memory-based preference-attenuation mechanism to emphasize personal psychological effects and memory-based preference evolution in human mobility patterns. Second, we took the visiting frequency of POIs into consideration and introduced the concept of POI stickiness to identify the important POIs that reflect the stable interests of an individual with respect to their mobility behavior decisions. Lastly, we incorporated the influence of both memory-based preferences and POI stickiness into a user-based collaborative filtering framework to improve the performance of POI recommendations. The results of the experiments we conducted on a real LBSN dataset demonstrated that our method outperformed other methods. Full article
(This article belongs to the Special Issue Geovisualization and Social Media)
Show Figures

Figure 1

20 pages, 10533 KiB  
Article
A Tourist Attraction Recommendation Model Fusing Spatial, Temporal, and Visual Embeddings for Flickr-Geotagged Photos
by Shanshan Han, Cuiming Liu, Keyun Chen, Dawei Gui and Qingyun Du
ISPRS Int. J. Geo-Inf. 2021, 10(1), 20; https://doi.org/10.3390/ijgi10010020 - 8 Jan 2021
Cited by 14 | Viewed by 3437
Abstract
The rapid development of social media data, including geotagged photos, has benefited the research of tourism geography; additionally, tourists’ increasing demand for personalized travel has encouraged more researchers to pay attention to tourism recommendation models. However, few studies have comprehensively considered the content [...] Read more.
The rapid development of social media data, including geotagged photos, has benefited the research of tourism geography; additionally, tourists’ increasing demand for personalized travel has encouraged more researchers to pay attention to tourism recommendation models. However, few studies have comprehensively considered the content and contextual information that may influence the recommendation accuracy, especially tourist attractions’ visual content due to redundant and noisy geotagged photos; therefore, we propose a tourist attraction recommendation model for Flickr-geotagged photos which fuses spatial, temporal, and visual embeddings (STVE). After spatial clustering and extracting visual embeddings of tourist attractions’ representative images, the spatial and temporal embeddings are modeled with the Word2Vec negative sampling strategy, and the visual embeddings are fused with Matrix Factorization and Bayesian Personalized Ranking. The combination of these two parts comprises our proposed STVE model. The experimental results demonstrate that our STVE model outperforms other baseline models. We also analyzed the parameter sensitivity and component performance to prove the performance superiority of our model. Full article
(This article belongs to the Special Issue Geovisualization and Social Media)
Show Figures

Figure 1

17 pages, 4087 KiB  
Article
Identifying Complex Junctions in a Road Network
by Jianting Yang, Kongyang Zhao, Muzi Li, Zhu Xu and Zhilin Li
ISPRS Int. J. Geo-Inf. 2021, 10(1), 4; https://doi.org/10.3390/ijgi10010004 - 24 Dec 2020
Cited by 6 | Viewed by 3364
Abstract
Automated generalization of road network data is of great concern to the map generalization community because of the importance of road data and the difficulty involved. Complex junctions are where roads meet and join in a complicated way and identifying them is a [...] Read more.
Automated generalization of road network data is of great concern to the map generalization community because of the importance of road data and the difficulty involved. Complex junctions are where roads meet and join in a complicated way and identifying them is a key issue in road network generalization. In addition to their structural complexity, complex junctions don’t have regular geometric boundary and their representation in spatial data is scale-dependent. All these together make them hard to identify. Existing methods use geometric and topological statistics to characterize and identify them, and are thus error-prone, scale-dependent and lack generality. More significantly, they cannot ensure the integrity of complex junctions. This study overcomes the obstacles by clarifying the topological boundary of a complex junction, which provides the basis for straightforward identification of them. Test results show the proposed method can find and isolate complex junctions in a road network with their integrity and is able to handle different road representations. The integral identification achieved can help to guarantee connectivity among roads when simplifying complex junctions, and greatly facilitate the geometric and semantic simplification of them. Full article
Show Figures

Figure 1

16 pages, 5359 KiB  
Article
Participatory Rural Spatial Planning Based on a Virtual Globe-Based 3D PGIS
by Linjun Yu, Xiaotong Zhang, Feng He, Yalan Liu and Dacheng Wang
ISPRS Int. J. Geo-Inf. 2020, 9(12), 763; https://doi.org/10.3390/ijgi9120763 - 21 Dec 2020
Cited by 10 | Viewed by 2890
Abstract
With the current spatial planning reform in China, public participation is becoming increasingly important in the success of rural spatial planning. However, engaging various stakeholders in spatial planning projects is difficult, mainly due to the lack of planning knowledge and computer skills. Therefore, [...] Read more.
With the current spatial planning reform in China, public participation is becoming increasingly important in the success of rural spatial planning. However, engaging various stakeholders in spatial planning projects is difficult, mainly due to the lack of planning knowledge and computer skills. Therefore, this paper discusses the development of a virtual globe-based 3D participatory geographic information system (PGIS) aiming to support public participation in the spatial planning process. The 3D PGIS-based rural planning approach was applied in the village of XiaFan, Ningbo, China. The results demonstrate that locals’ participation capacity was highly promoted, with their interest in 3D PGIS visualization being highly activated. The interactive landscape design tools allow stakeholders to present their own suggestions and designs, just like playing a computer game, thus improving their interactive planning abilities on-site. The scientific analysis tools allow planners to analyze and evaluate planning scenarios in different disciplines in real-time to quickly respond to suggestions from participants on-site. Functions and tools such as data management, marking, and highlighting were found to be useful for smoothing the interactions among planners and participants. In conclusion, virtual globe-based 3D PGIS highly supports the participatory rural landscape planning process and is potentially applicable to other regions. Full article
Show Figures

Figure 1

16 pages, 4565 KiB  
Article
The Land Use Mapping Techniques (Including the Areas Used by Pedestrians) Based on Low-Level Aerial Imagery
by Maciej Smaczyński, Beata Medyńska-Gulij and Łukasz Halik
ISPRS Int. J. Geo-Inf. 2020, 9(12), 754; https://doi.org/10.3390/ijgi9120754 - 16 Dec 2020
Cited by 8 | Viewed by 3039
Abstract
Traditionally, chorochromatic maps with a qualitative measurement level are used for land use presentations. Along with the use of UAV (Unmanned Aerial Vehicles), it became possible to register dynamic phenomena in a small space. We analyze the application of qualitative and quantitative mapping [...] Read more.
Traditionally, chorochromatic maps with a qualitative measurement level are used for land use presentations. Along with the use of UAV (Unmanned Aerial Vehicles), it became possible to register dynamic phenomena in a small space. We analyze the application of qualitative and quantitative mapping methods to visualize land use in a dynamic context thanks to cyclically obtained UAV imaging. The aim of the research is to produce thematic maps showing the actual land use of the small area urbanized by pedestrians. The research was based on low-level aerial imagery that recorded the movement of pedestrians in the research area. Additionally, based on the observation of pedestrian movement, researchers pointed out the areas of land that pedestrians used incorrectly. For this purpose, the author will present his own concept of the point-to-polygon transformation of pedestrians’ representation. The research was an opportunity to demonstrate suitable mapping techniques to effectively convey the information on land use by pedestrians. The results allowed the authors of this article to draw conclusions on the choice of suitable mapping techniques during the process of thematic land use map design and to specify further areas for research. Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

22 pages, 3274 KiB  
Review
Towards Self-Service GIS—Combining the Best of the Semantic Web and Web GIS
by Alexandra Rowland, Erwin Folmer and Wouter Beek
ISPRS Int. J. Geo-Inf. 2020, 9(12), 753; https://doi.org/10.3390/ijgi9120753 - 15 Dec 2020
Cited by 18 | Viewed by 4591
Abstract
The field of geographic information science has grown exponentially over the last few decades and, particularly within the context of the pervasiveness of the internet, bears witness to a rapid transition of its associated technologies from stand-alone systems to increasingly networked and distributed [...] Read more.
The field of geographic information science has grown exponentially over the last few decades and, particularly within the context of the pervasiveness of the internet, bears witness to a rapid transition of its associated technologies from stand-alone systems to increasingly networked and distributed systems as geospatial information becomes increasingly available online. With its long-standing history for innovation, the field has adopted many disruptive technologies from the fields of computer and information sciences through this transition towards web geographic information systems (GIS); most interestingly in the context of this research is the limited uptake of semantic web technologies by the field and its associated technologies, the lack of which has resulted in a technological disjoint between these fields. As the field seeks to make geospatial information more accessible to more users and in more contexts through ‘self-service’ applications, the use of these technologies is imperative to support the interoperability between distributed data sources. This paper aims to provide insight into what linked data tooling already exists, and based on the features of these, what may be possible for the achievement of self-service GIS. Findings include what visualisation, interactivity, analytics and usability features could be included in the realisation of self-service GIS, pointing to the opportunities that exist in bringing GIS technologies closer to the user. Full article
(This article belongs to the Special Issue Spatial Data Infrastructure for Distributed Management and Processing)
Show Figures

Figure 1

18 pages, 2515 KiB  
Article
Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image-Derived Point Clouds
by Arnadi Murtiyoso, Mirza Veriandi, Deni Suwardhi, Budhy Soeksmantono and Agung Budi Harto
ISPRS Int. J. Geo-Inf. 2020, 9(12), 743; https://doi.org/10.3390/ijgi9120743 - 12 Dec 2020
Cited by 15 | Viewed by 4415
Abstract
Developments in UAV sensors and platforms in recent decades have stimulated an upsurge in its application for 3D mapping. The relatively low-cost nature of UAVs combined with the use of revolutionary photogrammetric algorithms, such as dense image matching, has made it a strong [...] Read more.
Developments in UAV sensors and platforms in recent decades have stimulated an upsurge in its application for 3D mapping. The relatively low-cost nature of UAVs combined with the use of revolutionary photogrammetric algorithms, such as dense image matching, has made it a strong competitor to aerial lidar mapping. However, in the context of 3D city mapping, further 3D modeling is required to generate 3D city models which is often performed manually using, e.g., photogrammetric stereoplotting. The aim of the paper was to try to implement an algorithmic approach to building point cloud segmentation, from which an automated workflow for the generation of roof planes will also be presented. 3D models of buildings are then created using the roofs’ planes as a base, therefore satisfying the requirements for a Level of Detail (LoD) 2 in the CityGML paradigm. Consequently, the paper attempts to create an automated workflow starting from UAV-derived point clouds to LoD 2-compatible 3D model. Results show that the rule-based segmentation approach presented in this paper works well with the additional advantage of instance segmentation and automatic semantic attribute annotation, while the 3D modeling algorithm performs well for low to medium complexity roofs. The proposed workflow can therefore be implemented for simple roofs with a relatively low number of planar surfaces. Furthermore, the automated approach to the 3D modeling process also helps to maintain the geometric requirements of CityGML such as 3D polygon coplanarity vis-à-vis manual stereoplotting. Full article
(This article belongs to the Special Issue Virtual 3D City Models)
Show Figures

Figure 1

21 pages, 4134 KiB  
Article
A Fuzzy Logic-Based Approach for Modelling Uncertainty in Open Geospatial Data on Landfill Suitability Analysis
by Neema Nicodemus Lyimo, Zhenfeng Shao, Ally Mgelwa Ally, Nana Yaw Danquah Twumasi, Orhan Altan and Camilius A. Sanga
ISPRS Int. J. Geo-Inf. 2020, 9(12), 737; https://doi.org/10.3390/ijgi9120737 - 9 Dec 2020
Cited by 12 | Viewed by 3142
Abstract
Besides OpenStreetMap (OSM), there are other local sources, such as open government data (OGD), that have the potential to enrich the modeling process with decision criteria that uniquely reflect some local patterns. However, both data are affected by uncertainty issues, which limits their [...] Read more.
Besides OpenStreetMap (OSM), there are other local sources, such as open government data (OGD), that have the potential to enrich the modeling process with decision criteria that uniquely reflect some local patterns. However, both data are affected by uncertainty issues, which limits their usability. This work addresses the imprecisions on suitability layers generated from such data. The proposed method is founded on fuzzy logic theories. The model integrates OGD, OSM data and remote sensing products and generate reliable landfill suitability results. A comparison analysis demonstrates that the proposed method generates more accurate, representative and reliable suitability results than traditional methods. Furthermore, the method has facilitated the introduction of open government data for suitability studies, whose fusion improved estimations of population distribution and land-use mapping than solely relying on free remotely sensed images. The proposed method is applicable for preparing decision maps from open datasets that have undergone similar generalization procedures as the source of their uncertainty. The study provides evidence for the applicability of OGD and other related open data initiatives (ODIs) for land-use suitability studies, especially in developing countries. Full article
Show Figures

Figure 1

22 pages, 5250 KiB  
Article
Form Follows Content: An Empirical Study on Symbol-Content (In)Congruences in Thematic Maps
by Silvia Klettner
ISPRS Int. J. Geo-Inf. 2020, 9(12), 719; https://doi.org/10.3390/ijgi9120719 - 2 Dec 2020
Cited by 1 | Viewed by 2459
Abstract
Through signs and symbols, maps represent geographic space in a generalized and abstracted way. Cartographic research is, therefore, concerned with establishing a mutually shared set of signs and semiotic rules to communicate geospatial information successfully. While cartographers generally strive for cognitively congruent maps, [...] Read more.
Through signs and symbols, maps represent geographic space in a generalized and abstracted way. Cartographic research is, therefore, concerned with establishing a mutually shared set of signs and semiotic rules to communicate geospatial information successfully. While cartographers generally strive for cognitively congruent maps, empirical research has only started to explore the different facets and levels of correspondences between external cartographic representations and processes of human cognition. This research, therefore, draws attention to the principle of contextual congruence to study the correspondences between shape symbols and different geospatial content. An empirical study was carried out to explore the (in)congruence of cartographic point symbols with respect to positive, neutral, and negative geospatial topics in monothematic maps. In an online survey, 72 thematic maps (i.e., 12 map topics × 6 symbols) were evaluated by 116 participants in a between-groups design. The point symbols comprised five symmetric shapes (i.e., Circle, Triangle, Square, Rhomb, Star) and one Asymmetric Star shape. The study revealed detailed symbol-content congruences for each map topic as well as on an aggregated level, i.e., by positive, neutral, and negative topic clusters. Asymmetric Star symbols generally showed to be highly incongruent with positive and neutral topics, while highly congruent with negative map topics. Symmetric shapes, on the other hand, emerged to be of high congruence with positive and neutral map topics, whilst incongruent with negative topics. As the meaning of point symbols showed to be susceptible to context, the findings lead to the conclusion that cognitively congruent maps require profound context-specific considerations when designing and employing map symbols. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

14 pages, 1200 KiB  
Article
OurPlaces: Cross-Cultural Crowdsourcing Platform for Location Recommendation Services
by Luong Vuong Nguyen, Jason J. Jung and Myunggwon Hwang
ISPRS Int. J. Geo-Inf. 2020, 9(12), 711; https://doi.org/10.3390/ijgi9120711 - 27 Nov 2020
Cited by 13 | Viewed by 2699
Abstract
This paper presents a cross-cultural crowdsourcing platform, called OurPlaces, where people from different cultures can share their spatial experiences. We built a three-layered architecture composed of: (i) places (locations where people have visited); (ii) cognition (how people [...] Read more.
This paper presents a cross-cultural crowdsourcing platform, called OurPlaces, where people from different cultures can share their spatial experiences. We built a three-layered architecture composed of: (i) places (locations where people have visited); (ii) cognition (how people have experienced these places); and (iii) users (those who have visited these places). Notably, cognition is represented as a paring of two similar places from different cultures (e.g., Versailles and Gyeongbokgung in France and Korea, respectively). As a case study, we applied the OurPlaces platform to a cross-cultural tourism recommendation system and conducted a simulation using a dataset collected from TripAdvisor. The tourist places were classified into four types (i.e., hotels, restaurants, shopping malls, and attractions). In addition, user feedback (e.g., ratings, rankings, and reviews) from various nationalities (assumed to be equivalent to cultures) was exploited to measure the similarities between tourism places and to generate a cognition layer on the platform. To demonstrate the effectiveness of the OurPlaces-based system, we compared it with a Pearson correlation-based system as a baseline. The experimental results show that the proposed system outperforms the baseline by 2.5% and 4.1% in the best case in terms of MAE and RMSE, respectively. Full article
(This article belongs to the Special Issue Intelligent Systems Based on Open and Crowdsourced Location Data)
Show Figures

Figure 1

19 pages, 7012 KiB  
Article
Network Characteristics and Vulnerability Analysis of Chinese Railway Network under Earthquake Disasters
by Lingzhi Yin and Yafei Wang
ISPRS Int. J. Geo-Inf. 2020, 9(12), 697; https://doi.org/10.3390/ijgi9120697 - 25 Nov 2020
Cited by 9 | Viewed by 2230
Abstract
The internal structure and operation rules of railway network have become increasingly complex along with the expansion of the network, putting a higher demand on the development of the railway and the reliability and adaptability of the railway under earthquake disasters. The theory [...] Read more.
The internal structure and operation rules of railway network have become increasingly complex along with the expansion of the network, putting a higher demand on the development of the railway and the reliability and adaptability of the railway under earthquake disasters. The theory and method concerning complex railway network can well capture the internal structure of railway facilities system and the relationship between subsystems. However, most of the research focuses on the vulnerability based on the logical network of railway, deviating from the actual spatial location of railway network. Additionally, only random attacks and deliberate attacks are factored in, ignoring the impact of earthquake disasters on actual railway lines. Therefore, this paper built a geographic railway network and analyzed topological structure of the network and its vulnerability under earthquake disasters. First, the geographic network of Chinese railway was built based on the methods of complex network, linear reference and dynamic segmentation. Second, the spatial distribution of railway network flow was analyzed by node degree, betweenness and clustering coefficient. Finally, the vulnerability of the geographic railway network in areas with high seismic hazards were assessed, aiming to improve the capacity to prevent and resist earthquake disasters. Full article
Show Figures

Figure 1

16 pages, 7273 KiB  
Article
Developing Versatile Graphic Map Load Metrics
by Radek Barvir and Vit Vozenilek
ISPRS Int. J. Geo-Inf. 2020, 9(12), 705; https://doi.org/10.3390/ijgi9120705 - 25 Nov 2020
Cited by 9 | Viewed by 2411
Abstract
Graphic map load is a property of a map quantifying the amount of map content. It indicates the visual complexity of the map and helps cartographers to adapt maps and other geospatial visualizations to accomplish their purpose. Generally, map design needs to enable [...] Read more.
Graphic map load is a property of a map quantifying the amount of map content. It indicates the visual complexity of the map and helps cartographers to adapt maps and other geospatial visualizations to accomplish their purpose. Generally, map design needs to enable the user to quickly, comprehensively, and intuitively obtain the relevant spatial information from a map. Especially, this applies in cases like crisis management, immunology and military. However, there are no widely applicable metrics to assess the complexity of cartographic products. This paper evaluates seven simple metrics for graphic map load calculation based on image analytics using the set of 50 various maps on an easily understandable scale of 0–100%. The metrics are compared to values of user-perceived map load survey joined by 62 respondents. All the suggested metrics are designed for calculation with easy-accessible software and therefore suitable for use in any user environment. Metrics utilizing the principle of edge detection have been found suitable for a diversity of geospatial visualizations providing the best results among other metrics. Full article
(This article belongs to the Special Issue Geovisualization and Map Design)
Show Figures

Figure 1

21 pages, 18887 KiB  
Article
Worldwide Detection of Informal Settlements via Topological Analysis of Crowdsourced Digital Maps
by Satej Soman, Anni Beukes, Cooper Nederhood, Nicholas Marchio and Luís M. A. Bettencourt
ISPRS Int. J. Geo-Inf. 2020, 9(11), 685; https://doi.org/10.3390/ijgi9110685 - 16 Nov 2020
Cited by 22 | Viewed by 10654
Abstract
The recent growth of high-resolution spatial data, especially in developing urban environments, is enabling new approaches to civic activism, urban planning and the provision of services necessary for sustainable development. A special area of great potential and urgent need deals with urban expansion [...] Read more.
The recent growth of high-resolution spatial data, especially in developing urban environments, is enabling new approaches to civic activism, urban planning and the provision of services necessary for sustainable development. A special area of great potential and urgent need deals with urban expansion through informal settlements (slums). These neighborhoods are too often characterized by a lack of connections, both physical and socioeconomic, with detrimental effects to residents and their cities. Here, we show how a scalable computational approach based on the topological properties of digital maps can identify local infrastructural deficits and propose context-appropriate minimal solutions. We analyze 1 terabyte of OpenStreetMap (OSM) crowdsourced data to create worldwide indices of street block accessibility and local cadastral maps and propose infrastructure extensions with a focus on 120 Low and Middle Income Countries (LMICs) in the Global South. We illustrate how the lack of physical accessibility can be identified in detail, how the complexity and costs of solutions can be assessed and how detailed spatial proposals are generated. We discuss how these diagnostics and solutions provide a multiscalar set of new capabilities—from individual neighborhoods to global regions—that can coordinate local community knowledge with political agency, technical capability, and further research. Full article
Show Figures

Figure 1

17 pages, 3380 KiB  
Article
Time-Series Clustering for Home Dwell Time during COVID-19: What Can We Learn from It?
by Xiao Huang, Zhenlong Li, Junyu Lu, Sicheng Wang, Hanxue Wei and Baixu Chen
ISPRS Int. J. Geo-Inf. 2020, 9(11), 675; https://doi.org/10.3390/ijgi9110675 - 13 Nov 2020
Cited by 44 | Viewed by 4674
Abstract
In this study, we investigate the potential driving factors that lead to the disparity in the time-series of home dwell time in a data-driven manner, aiming to provide fundamental knowledge that benefits policy-making for better mitigation strategies of future pandemics. Taking Metro Atlanta [...] Read more.
In this study, we investigate the potential driving factors that lead to the disparity in the time-series of home dwell time in a data-driven manner, aiming to provide fundamental knowledge that benefits policy-making for better mitigation strategies of future pandemics. Taking Metro Atlanta as a study case, we perform a trend-driven analysis by conducting Kmeans time-series clustering using fine-grained home dwell time records from SafeGraph. Furthermore, we apply ANOVA (Analysis of Variance) coupled with post-hoc Tukey’s test to assess the statistical difference in sixteen recoded demographic/socioeconomic variables (from ACS 2014–2018 estimates) among the identified time-series clusters. We find that demographic/socioeconomic variables can explain the disparity in home dwell time in response to the stay-at-home order, which potentially leads to disparate exposures to the risk from the COVID-19. The results further suggest that socially disadvantaged groups are less likely to follow the order to stay at home, pointing out the extensive gaps in the effectiveness of social distancing measures that exist between socially disadvantaged groups and others. Our study reveals that the long-standing inequity issue in the U.S. stands in the way of the effective implementation of social distancing measures. Full article
(This article belongs to the Special Issue GIScience for Risk Management in Big Data Era)
Show Figures

Figure 1

22 pages, 5099 KiB  
Article
Exploring Travel Patterns during the Holiday Season—A Case Study of Shenzhen Metro System During the Chinese Spring Festival
by Jianxiao Liu, Wenzhong Shi and Pengfei Chen
ISPRS Int. J. Geo-Inf. 2020, 9(11), 651; https://doi.org/10.3390/ijgi9110651 - 30 Oct 2020
Cited by 13 | Viewed by 3537
Abstract
Research has shown that the growing holiday travel demand in modern society has a significant influence on daily travel patterns. However, few studies have focused on the distinctness of travel patterns during a holiday season and as a specified case, travel behavior studies [...] Read more.
Research has shown that the growing holiday travel demand in modern society has a significant influence on daily travel patterns. However, few studies have focused on the distinctness of travel patterns during a holiday season and as a specified case, travel behavior studies of the Chinese Spring Festival (CSF) at the city level are even rarer. This paper adopts a text-mining model (latent Dirichlet allocation (LDA)) to explore the travel patterns and travel purposes during the CSF season in Shenzhen based on the metro smart card data (MSC) and the points of interest (POIs) data. The study aims to answer two questions—(1) how to use MSC and POIs inferring travel purpose at the metro station level without the socioeconomic backgrounds of the cardholders? (2) What are the overall inner-city mobility patterns and travel activities during the Spring Festival holiday-week? The results show that six features of the CSF travel behavior are found and nine (three broad categories) travel patterns and trip activities are inferred. The activities in which travelers engaged during the CSF season are mainly consumption-oriented events, visiting relatives and friends and traffic-oriented events. This study is beneficial to metro corporations (timetable management), business owners (promotion strategy), researchers (travelers’ social attribute inference) and decision-makers (examine public service). Full article
(This article belongs to the Special Issue Geospatial Methods in Social and Behavioral Sciences)
Show Figures

Figure 1

21 pages, 3387 KiB  
Article
Urban Population Distribution Mapping with Multisource Geospatial Data Based on Zonal Strategy
by Guanwei Zhao and Muzhuang Yang
ISPRS Int. J. Geo-Inf. 2020, 9(11), 654; https://doi.org/10.3390/ijgi9110654 - 30 Oct 2020
Cited by 8 | Viewed by 2907
Abstract
Mapping population distribution at fine resolutions with high accuracy is crucial to urban planning and management. This paper takes Guangzhou city as the study area, illustrates the gridded population distribution map by using machine learning methods based on zoning strategy with multisource geospatial [...] Read more.
Mapping population distribution at fine resolutions with high accuracy is crucial to urban planning and management. This paper takes Guangzhou city as the study area, illustrates the gridded population distribution map by using machine learning methods based on zoning strategy with multisource geospatial data such as night light remote sensing data, point of interest data, land use data, and so on. The street-level accuracy evaluation results show that the proposed approach achieved good overall accuracy, with determinant coefficient (R2) being 0.713 and root mean square error (RMSE) being 5512.9. Meanwhile, the goodness of fit for single linear regression (LR) model and random forest (RF) regression model are 0.0039 and 0.605, respectively. For dense area, the accuracy of the random forest model is better than the linear regression model, while for sparse area, the accuracy of the linear regression model is better than the random forest model. The results indicated that the proposed method has great potential in fine-scale population mapping. Therefore, it is advised that the zonal modeling strategy should be the primary choice for solving regional differences in the population distribution mapping research. Full article
(This article belongs to the Special Issue Measuring, Mapping, Modeling, and Visualization of Cities)
Show Figures

Figure 1

24 pages, 7796 KiB  
Article
Personalized Legibility of an Indoor Environment for People with Motor Disabilities: A New Framework
by Ali Afghantoloee, Mir Abolfazl Mostafavi, Geoffrey Edwards and Amin Gharebaghi
ISPRS Int. J. Geo-Inf. 2020, 9(11), 649; https://doi.org/10.3390/ijgi9110649 - 29 Oct 2020
Cited by 1 | Viewed by 2244
Abstract
A mental map refers to the personalized representation of spatial knowledge in the human brain and is based on the perceptions, experiences, and interactions of people with their environment. For people with motor disabilities (PWMD) some perceptions and interactions with the environment during [...] Read more.
A mental map refers to the personalized representation of spatial knowledge in the human brain and is based on the perceptions, experiences, and interactions of people with their environment. For people with motor disabilities (PWMD) some perceptions and interactions with the environment during their mobility occur in different ways and consequently lead to different mental maps. For example, these people perceive and interact differently with elevators, escalators, and steps during their mobility. Hence, their perceptions of the level of complexity and the legibility of an environment may be different. Legibility of an environment is an indicator that measures the level of complexity and the ease of understanding of that environment by a person. In the literature, legibility is mostly estimated based on the environmental factors such as visibility, connectivity, and layout complexity for a given space. However, the role of personal factors (e.g., capacities) is rarely considered in the legibility assessment, which complicates its personalization. This paper aims at studying the influence of personal factors on the evaluation of the legibility of indoor environments for PWMD. In addition to the visibility, the connectivity, and the complexity of indoor environments, we also integrate the influence of the level of accessibility (i.e., presence of facilitators and obstacles) in the legibility assessment process. The Quebec City Convention Centre is selected as our study area and the legibility of this building is quantified. We show how the integration of the above-mentioned factors can influence the legibility for PWMD and hence their mobility performance in those environments. Full article
Show Figures

Figure 1

28 pages, 6386 KiB  
Article
Using Flickr Geotagged Photos to Estimate Visitor Trajectories in World Heritage Cities
by Antoni Domènech, Inmaculada Mohino and Borja Moya-Gómez
ISPRS Int. J. Geo-Inf. 2020, 9(11), 646; https://doi.org/10.3390/ijgi9110646 - 29 Oct 2020
Cited by 18 | Viewed by 5455
Abstract
World tourism dynamics are in constant change, as well as they are deeply shaping the trajectories of cities. The “call effect” for having the World Heritage status has boosted tourism in many cities. The large number of visitors and the side effects, such [...] Read more.
World tourism dynamics are in constant change, as well as they are deeply shaping the trajectories of cities. The “call effect” for having the World Heritage status has boosted tourism in many cities. The large number of visitors and the side effects, such as the overcrowding of central spaces, are arousing the need to develop and protect heritage assets. Hence, the analysis of tourist spatial behaviour is critical for tackling the needs of touristified cities correctly. In this article, individual visitor spatiotemporal trajectories are reconstructed along with the urban network using thousands of geotagged Flickr photos taken by visitors in the historic centre of the World Heritage City of Toledo (Spain). A process of trajectory reconstruction using advanced GIS techniques has been implemented. The spatial behaviour has been used to classify the tourist sites offered on the city’s official tourist map, as well as to identify the association with the land uses. Results bring new knowledge to understand visitor spatial behaviour and new visions about the influence of the urban environment and its uses on the visitor spatial behaviour. Our findings illustrate how tourist attractions and the location of mixed commercial and recreational uses shape the visitor spatial behaviour. Overflowed streets and shadow areas underexplored by visitors are pinpointed. Full article
(This article belongs to the Special Issue Geospatial Methods in Social and Behavioral Sciences)
Show Figures

Figure 1

19 pages, 11680 KiB  
Article
Spatiotemporal Patterns and Driving Factors on Crime Changing During Black Lives Matter Protests
by Zhiran Zhang, Dexuan Sha, Beidi Dong, Shiyang Ruan, Agen Qiu, Yun Li, Jiping Liu and Chaowei Yang
ISPRS Int. J. Geo-Inf. 2020, 9(11), 640; https://doi.org/10.3390/ijgi9110640 - 27 Oct 2020
Cited by 8 | Viewed by 4922
Abstract
The death of George Floyd has brought a new wave of 2020 Black Lives Matter (BLM) protests into U.S. cities. Protests happened in a few cities accompanied by reports of violence over the first few days. The protests appear to be related to [...] Read more.
The death of George Floyd has brought a new wave of 2020 Black Lives Matter (BLM) protests into U.S. cities. Protests happened in a few cities accompanied by reports of violence over the first few days. The protests appear to be related to rising crime. This study uses newly collected crime data in 50 U.S. cities/counties to explore the spatiotemporal crime changes under BLM protests and to estimate the driving factors of burglary induced by the BLM protest. Four spatial and statistic models were used, including the Average Nearest Neighbor (ANN), Hotspot Analysis, Least Absolute Shrinkage, and Selection Operator (LASSO), and Binary Logistic Regression. The results show that (1) crime, especially burglary, has risen sharply in a few cities/counties, yet heterogeneity exists across cities/counties; (2) the volume and spatial distribution of certain crime types changed under BLM protest, the activity of burglary clustered in certain regions during protests period; (3) education, race, demographic, and crime rate in 2019 are related with burglary changes during BLM protests. The findings from this study can provide valuable information for ensuring the capabilities of the police and governmental agencies to deal with the evolving crisis. Full article
Show Figures

Figure 1

28 pages, 26554 KiB  
Article
A Feasibility Study of Map-Based Dashboard for Spatiotemporal Knowledge Acquisition and Analysis
by Chenyu Zuo, Linfang Ding and Liqiu Meng
ISPRS Int. J. Geo-Inf. 2020, 9(11), 636; https://doi.org/10.3390/ijgi9110636 - 27 Oct 2020
Cited by 9 | Viewed by 6329
Abstract
Map-based dashboards are among the most popular tools that support the viewing and understanding of a large amount of geo-data with complex relations. In spite of many existing design examples, little is known about their impacts on users and whether they match the [...] Read more.
Map-based dashboards are among the most popular tools that support the viewing and understanding of a large amount of geo-data with complex relations. In spite of many existing design examples, little is known about their impacts on users and whether they match the information demand and expectations of target users. The authors first designed a novel map-based dashboard to support their target users’ spatiotemporal knowledge acquisition and analysis, and then conducted an experiment to assess the feasibility of the proposed dashboard. The experiment consists of eye-tracking, benchmark tasks, and interviews. A total of 40 participants were recruited for the experiment. The results have verified the effectiveness and efficiency of the proposed map-based dashboard in supporting the given tasks. At the same time, the experiment has revealed a number of aspects for improvement related to the layout design, the labeling of multiple panels and the integration of visual analytical elements in map-based dashboards, as well as future user studies. Full article
(This article belongs to the Special Issue Multimedia Cartography)
Show Figures

Figure 1

20 pages, 10319 KiB  
Article
Investigating the Relationship between the Built Environment and Relative Risk of COVID-19 in Hong Kong
by Jianwei Huang, Mei-Po Kwan, Zihan Kan, Man Sing Wong, Coco Yin Tung Kwok and Xinyu Yu
ISPRS Int. J. Geo-Inf. 2020, 9(11), 624; https://doi.org/10.3390/ijgi9110624 - 25 Oct 2020
Cited by 60 | Viewed by 8194
Abstract
Understanding the relationship between the built environment and the risk of COVID-19 transmission is essential to respond to the pandemic. This study explores the relationship between the built environment and COVID-19 risk using the confirmed cases data collected in Hong Kong. Using the [...] Read more.
Understanding the relationship between the built environment and the risk of COVID-19 transmission is essential to respond to the pandemic. This study explores the relationship between the built environment and COVID-19 risk using the confirmed cases data collected in Hong Kong. Using the information on the residential buildings and places visited for each case from the dataset, we assess the risk of COVID-19 and explore their geographic patterns at the level of Tertiary Planning Unit (TPU) based on incidence rate (R1) and venue density (R2). We then investigate the associations between several built-environment variables (e.g., nodal accessibility and green space density) and COVID-19 risk using global Poisson regression (GPR) and geographically weighted Poisson regression (GWPR) models. The results indicate that COVID-19 risk tends to be concentrated in particular areas of Hong Kong. Using the incidence rate as an indicator to assess COVID-19 risk may underestimate the risk of COVID-19 transmission in some suburban areas. The GPR and GWPR models suggest a close and spatially heterogeneous relationship between the selected built-environment variables and the risk of COVID-19 transmission. The study provides useful insights that support policymakers in responding to the COVID-19 pandemic and future epidemics. Full article
(This article belongs to the Special Issue Geospatial Methods in Social and Behavioral Sciences)
Show Figures

Figure 1

12 pages, 12296 KiB  
Article
Generation of Spatiotemporally Resolved Power Production Data of PV Systems in Germany
by Reinhold Lehneis, David Manske and Daniela Thrän
ISPRS Int. J. Geo-Inf. 2020, 9(11), 621; https://doi.org/10.3390/ijgi9110621 - 24 Oct 2020
Cited by 6 | Viewed by 2877
Abstract
Photovoltaics, as one of the most important renewable energies in Germany, have increased significantly in recent years and cover up to 50% of the German power provision on sunny days. To investigate the manifold effects of increasing renewables, spatiotemporally disaggregated data on the [...] Read more.
Photovoltaics, as one of the most important renewable energies in Germany, have increased significantly in recent years and cover up to 50% of the German power provision on sunny days. To investigate the manifold effects of increasing renewables, spatiotemporally disaggregated data on the power generation from photovoltaic (PV) systems are often mandatory. Due to strict data protection regulations, such information is not freely available for Germany. To close this gap, numerical simulations using publicly accessible plant and weather data can be applied to determine the required spatiotemporal electricity generation. For this, the sunlight-to-power conversion is modeled with the help of the open-access web tool of the Photovoltaic Geographical Information System (PVGIS). The presented simulations are carried out for the year 2016 and consider nearly 1.612 million PV systems in Germany, which have been aggregated into municipal areas before performing the calculations. The resulting hourly resolved time series of the entire plant ensemble are converted into a time series with daily resolution and compared with measured feed-in data to validate the numerical simulations that show a high degree of agreement. Such power production data can be used to monitor and optimize renewable energy systems on different spatiotemporal scales. Full article
(This article belongs to the Collection Spatial and Temporal Modelling of Renewable Energy Systems)
Show Figures

Figure 1

28 pages, 986 KiB  
Article
A Flexible Framework for Covering and Partitioning Problems in Indoor Spaces
by Sung-Hwan Kim, Ki-Joune Li and Hwan-Gue Cho
ISPRS Int. J. Geo-Inf. 2020, 9(11), 618; https://doi.org/10.3390/ijgi9110618 - 23 Oct 2020
Cited by 3 | Viewed by 2433
Abstract
Utilizing indoor spaces has become important with the progress of localization and positioning technologies. Covering and partitioning problems play an important role in managing, indexing, and analyzing spatial data. In this paper, we propose a multi-stage framework for indoor space partitioning, each stage [...] Read more.
Utilizing indoor spaces has become important with the progress of localization and positioning technologies. Covering and partitioning problems play an important role in managing, indexing, and analyzing spatial data. In this paper, we propose a multi-stage framework for indoor space partitioning, each stage of which can be flexibly adjusted according to target applications. One of the main features of our framework is the parameterized constraint, which characterizes the properties and restrictions of unit geometries used for the covering and partitioning tasks formulated as the binary linear programs. It enables us to apply the proposed method to various problems by simply changing the constraint parameter. We present basic constraints that are widely used in many covering and partitioning problems regarding the indoor space applications along with several techniques that simplify the computation process. We apply it to particular applications, device placement and route planning problems, in order to give examples of the use of our framework in the perspective on how to design a constraint and how to use the resulting partitions. We also demonstrate the effectiveness with experimental results compared to baseline methods. Full article
Show Figures

Figure 1

Back to TopTop