Controlling Molecular Nanomagnets

A special issue of Magnetochemistry (ISSN 2312-7481). This special issue belongs to the section "Magnetic Nanospecies".

Deadline for manuscript submissions: closed (31 May 2019) | Viewed by 19468

Special Issue Editor


E-Mail Website
Guest Editor
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
Interests: molecular magnetic and spintronic materials and devices; organometallic lanthanide and actinide chemistry; the interplay between electrons and single spins; molecular-spin qubits; multifunctional materials; LIESST compounds

Special Issue Information

Dear Colleagues,

Molecule-based magnets are emerging as active ingredients in spintronic and multi-functional materials. There have been great advancements in the integration of single molecule magnets (SMMs) into electronic device architectures, and the active component of such devices are now utilizing individual magnetic molecules. We are starting to understand how these molecules behave on surfaces and in tunnel-junctions. As such, how we manipulate the quantum and spin features of SMMs is becoming increasingly important. The magnetic properties of SMMs can be influenced using multiple external stimuli, including magnetic field, temperature, pressure, electronic current, microwaves and light. This Special Issue aims to capture a collection of articles that pose emerging ideas on how to manipulate nanomagnets and their underlying mechanisms. We are particularly interested in articles in which the bi-stability of SMMs and magnetic chains are manipulated. We invite colleagues to submit original research articles that fit into one of the key topics listed below.

Dr. Jennifer Le Roy
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Magnetochemistry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Spin communication
  • Molecule-based spintronics and spin qubits
  • Single-molecule magnets
  • Single-chain magnets
  • LIEEST compounds
  • Magnetic MOFs
  • Coherent metal complexes
  • Single-crystal-to-single-crystal transformations
  • Pressure induced spin changes

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

9 pages, 1876 KiB  
Communication
Estimation of Absolute Spin Counts in Nitronyl Nitroxide-Bearing Graphene Nanoribbons
by Dmitri Stass and Evgeny Tretyakov
Magnetochemistry 2019, 5(2), 32; https://doi.org/10.3390/magnetochemistry5020032 - 29 May 2019
Cited by 8 | Viewed by 2778
Abstract
The degrees of spin labeling of a polyphenylene-based polymer and its graphitized derivative with a stable nitronyl nitroxide were evaluated by estimating the absolute numbers of spins in a set of samples using continuous wave (CW) electron spin resonance (ESR). For these particular [...] Read more.
The degrees of spin labeling of a polyphenylene-based polymer and its graphitized derivative with a stable nitronyl nitroxide were evaluated by estimating the absolute numbers of spins in a set of samples using continuous wave (CW) electron spin resonance (ESR). For these particular systems, the degrees of spin labeling were found to be approximately 0.8% and 1.3%, respectively. The developed procedure complements the more advanced time-resolved/cryogenic ESR studies on these systems by focusing on the stable spin labels introduced in these magnetically intricate materials and providing an estimate of their absolute amount, which is indispensable in the development of synthetic approaches to prepare modified graphene systems and for evaluating the success of these systems. Full article
(This article belongs to the Special Issue Controlling Molecular Nanomagnets)
Show Figures

Figure 1

8 pages, 602 KiB  
Article
A Clock Transition in the Cr7Mn Molecular Nanomagnet
by Charles A. Collett, Kai-Isaak Ellers, Nicholas Russo, Kevin R. Kittilstved, Grigore A. Timco, Richard E. P. Winpenny and Jonathan R. Friedman
Magnetochemistry 2019, 5(1), 4; https://doi.org/10.3390/magnetochemistry5010004 - 14 Jan 2019
Cited by 14 | Viewed by 5188
Abstract
A viable qubit must have a long coherence time T 2 . In molecular nanomagnets, T 2 is often limited at low temperatures by the presence of dipole and hyperfine interactions, which are often mitigated through sample dilution, chemical engineering and isotope substitution [...] Read more.
A viable qubit must have a long coherence time T 2 . In molecular nanomagnets, T 2 is often limited at low temperatures by the presence of dipole and hyperfine interactions, which are often mitigated through sample dilution, chemical engineering and isotope substitution in synthesis. Atomic-clock transitions offer another route to reducing decoherence from environmental fields by reducing the effective susceptibility of the working transition to field fluctuations. The Cr7Mn molecular nanomagnet, a heterometallic ring, features a clock transition at zero field. Both continuous-wave and spin-echo electron-spin resonance experiments on Cr7Mn samples, diluted via co-crystallization, show evidence of the effects of the clock transition with a maximum T 2 390 ns at 1.8 K. We discuss improvements to the experiment that may increase T 2 further. Full article
(This article belongs to the Special Issue Controlling Molecular Nanomagnets)
Show Figures

Figure 1

16 pages, 4671 KiB  
Article
Self-Assembly Properties of Amphiphilic Iron(III) Spin Crossover Complexes in Water and at the Air–Water Interface
by Paulo N. Martinho, Irina A. Kühne, Brendan Gildea, George McKerr, Barry O’Hagan, Tia E. Keyes, Tibebe Lemma, Claudio Gandolfi, Martin Albrecht and Grace G. Morgan
Magnetochemistry 2018, 4(4), 49; https://doi.org/10.3390/magnetochemistry4040049 - 04 Nov 2018
Cited by 10 | Viewed by 3914
Abstract
The assembly properties of three known spin crossover iron(III) complexes 13, at the air–water interface, are reported. All three complexes are amphiphiles, each bearing a pair of Cn alkyl chains on the polyamino Schiff base sal2trien ligand [...] Read more.
The assembly properties of three known spin crossover iron(III) complexes 13, at the air–water interface, are reported. All three complexes are amphiphiles, each bearing a pair of Cn alkyl chains on the polyamino Schiff base sal2trien ligand (n = 6, 12, or 18). Complex 1 is water-soluble but complexes 2 and 3 form Langmuir films, and attempts were made to transfer the film of the C18 complex 3 to a glass surface. The nature of the assembly of more concentrated solutions of 3 in water was investigated by light scattering, cryo-SEM (scanning electron microscopy), and TEM (transmission electron microscopy), all of which indicated nanoparticle formation. Lyophilization of the assembly of complex 3 in water yielded a powder with a markedly different magnetic profile from the powder recovered from the initial synthesis, notably, the spin crossover was almost completely quenched, and the thermal behavior was predominantly low spin, suggesting that nanoparticle formation traps the system in one spin state. Full article
(This article belongs to the Special Issue Controlling Molecular Nanomagnets)
Show Figures

Graphical abstract

13 pages, 4581 KiB  
Article
A New {Dy5} Single-Molecule Magnet Bearing the Schiff Base Ligand N-Naphthalidene-2-amino-5-chlorophenol
by Dimitris I. Alexandropoulos, Alysha A. Alaimo, Di Sun and Theocharis C. Stamatatos
Magnetochemistry 2018, 4(4), 48; https://doi.org/10.3390/magnetochemistry4040048 - 01 Nov 2018
Cited by 5 | Viewed by 3282
Abstract
A new {Dy5} cluster compound has been synthesized and structurally characterized from the initial use of the Schiff base ligand N-naphthalidene-2-amino-5-chlorophenol (nacpH2) in coordination chemistry. The 1:1 reaction between Dy(hpd)3∙2H2O and nacpH2, [...] Read more.
A new {Dy5} cluster compound has been synthesized and structurally characterized from the initial use of the Schiff base ligand N-naphthalidene-2-amino-5-chlorophenol (nacpH2) in coordination chemistry. The 1:1 reaction between Dy(hpd)3∙2H2O and nacpH2, in a solvent mixture comprising CH2Cl2 and MeOH, afforded orange crystals of [Dy5(OH)2(hpd)3(nacp)5(MeOH)5] (1) in 70% yield, where hpd is the anion of 3,5-heptadione. The {Dy5} complex can be described as two vertical {Dy33-OH)}8+ triangles sharing a common vertex; such a metal topology is unprecedented in 4f-metal cluster chemistry. Direct current (dc) magnetic susceptibility studies revealed the presence of some weak ferromagnetic exchange interactions between the five DyIII ions at low temperatures. Alternating current (ac) magnetic susceptibility measurements at zero applied dc field showed that complex 1∙3MeOH∙CH2Cl2 exhibits temperature- and frequency-dependent out-of-phase signals below ~20 K, characteristics of a single-molecule magnet (SMM). The resulting relaxation times were used to construct an Arrhenius-type plot and determine an effective energy barrier, Ueff, of 100 K for the magnetization reversal. The application of a small dc field of 200 Oe resulted in the surpassing of the quantum tunneling process and subsequently the increase of the Ueff to a value of 170 K. The reported results are part of a long-term program aiming at the preparation of structurally and magnetically interesting lanthanide complexes bearing various Schiff base chelating/bridging ligands. Full article
(This article belongs to the Special Issue Controlling Molecular Nanomagnets)
Show Figures

Figure 1

17 pages, 2574 KiB  
Article
Intramolecular Spin State Locking in Iron(II) 2,6-Di(pyrazol-3-yl)pyridine Complexes by Phenyl Groups: An Experimental Study
by Yulia Nelyubina, Alexander Polezhaev, Alexander Pavlov, Dmitrii Aleshin, Svetlana Savkina, Nikolay Efimov, Teimur Aliev and Valentin Novikov
Magnetochemistry 2018, 4(4), 46; https://doi.org/10.3390/magnetochemistry4040046 - 16 Oct 2018
Cited by 17 | Viewed by 3685
Abstract
Here we report a series of 1-phenyl-5-substituted 2,6-di(pyrazol-3-yl)pyridine complexes with iron(II) ion found in a high spin state in solids (according to magnetochemistry) and in solution (according to NMR spectroscopy), providing experimental evidence for it being an intramolecular effect induced by the phenyl [...] Read more.
Here we report a series of 1-phenyl-5-substituted 2,6-di(pyrazol-3-yl)pyridine complexes with iron(II) ion found in a high spin state in solids (according to magnetochemistry) and in solution (according to NMR spectroscopy), providing experimental evidence for it being an intramolecular effect induced by the phenyl groups. According to X-ray diffraction, the high spin locking of the metal ion is a result of its highly distorted coordination environment (with a very low ‘twist’ angle atypical of 2,6-di(pyrazol-3-yl)pyridine complexes), which remains this way in complexes with different substituents and counterions, in a diamagnetic zinc(II) analogue and in their solutions. Three possible reasons behind it, including additional coordination with the phenyl group, energy penalty incurred by its rotation or intramolecular stacking interactions, are addressed experimentally. Full article
(This article belongs to the Special Issue Controlling Molecular Nanomagnets)
Show Figures

Graphical abstract

Back to TopTop