Marine Microorganisms and Ecology

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Environmental Microbiology".

Deadline for manuscript submissions: 15 August 2024 | Viewed by 4217

Special Issue Editors


E-Mail Website
Guest Editor
Department of Coastal Sciences, The University of Southern Mississippi, Ocean Springs, MS 39564, USA
Interests: VBNC (viable but nonculturable bacteria); vibrio necrotizing fasciitis; antibiotic resistance; plasmid transfer; petroleum degradation; bioremediation
Special Issues, Collections and Topics in MDPI journals
Gulf Coast Research Lab (GCRL), The University of Southern Mississippi, Ocean Springs, MS 39564, USA
Interests: antibiotic resistance; marine microbiology; modelling; molecular diagnostics

Special Issue Information

Dear Colleagues,

Marine microorganisms play a key role in shaping marine ecosystems and have a profound impact on global biogeochemical cycles. As the foundation of marine food webs, these tiny, but powerful, organisms form the basis of life in oceans.

The collection of articles presented in this Special Issue provides a comprehensive overview of cutting-edge research in this field. It explores the diversity and distribution of marine microorganisms, including bacteria, archaea, algae, viruses and protozoa, as well as their interactions with each other and the surrounding environment. Advanced molecular techniques and innovative sampling methods have opened new opportunities for advancement, allowing researchers to unearth novel species and understand their ecological functions

Prof. Dr. Darrell Jay Grimes
Dr. Shuo Shen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 4283 KiB  
Article
Prevalence and Preferred Niche of Small Eukaryotes with Mixotrophic Potentials in the Global Ocean
by Kaiyi Dong, Ying Wang, Wenjing Zhang and Qian Li
Microorganisms 2024, 12(4), 750; https://doi.org/10.3390/microorganisms12040750 - 08 Apr 2024
Viewed by 666
Abstract
Unicellular eukaryotes that are capable of phago-mixotrophy in the ocean compete for inorganic nutrients and light with autotrophs, and for bacterial prey with heterotrophs. In this study, we ask what the overall prevalence of eukaryotic mixotrophs in the vast open ocean is, and [...] Read more.
Unicellular eukaryotes that are capable of phago-mixotrophy in the ocean compete for inorganic nutrients and light with autotrophs, and for bacterial prey with heterotrophs. In this study, we ask what the overall prevalence of eukaryotic mixotrophs in the vast open ocean is, and how the availability of inorganic nutrients, light, and prey affects their relative success. We utilized the Tara Oceans eukaryotic 18S rRNA gene and environmental context variables dataset to conduct a large-scale field analysis. We also performed isolate-based culture experiments to verify growth and nutritional resource relationships for representative mixotrophic taxa. The field analysis suggested that the overall prevalence of mixotrophs were negatively correlated with nutrient concentrations and positively associated with light availability. Concentrations of heterotrophic bacteria as a single variable also presented a positive correlation with mixotrophic prevalence, but to a lesser extent. On the other hand, the culture experiments demonstrated a taxa-specific relationship between mixotrophic growth and nutrition resources, i.e., the growth of one group was significantly dependent on light availability, while the other group was less affected by light when they received sufficient prey. Both groups were capable of growing efficiently with low inorganic nutrients when receiving sufficient prey and light. Therefore, our field analysis and culture experiments both suggest that phago-mixotrophy for ocean eukaryotes is seemingly an efficient strategy to compensate for nutrient deficiency but unnecessary to compensate for light scarcity. This study collectively revealed a close relationship between abiotic and biotic nutritional resources and the prevalence of trophic strategies, shedding light on the importance of light and nutrients for determining the competitive success of mixotrophs versus autotrophic and heterotrophic eukaryotes in the ocean. Full article
(This article belongs to the Special Issue Marine Microorganisms and Ecology)
Show Figures

Figure 1

15 pages, 6736 KiB  
Article
Deciphering Microbial Communities and Distinct Metabolic Pathways in the Tangyin Hydrothermal Fields of Okinawa Trough through Metagenomic and Genomic Analyses
by Jiake Li, Haojin Cheng, Fu Yin, Jiwen Liu, Xiao-Hua Zhang and Min Yu
Microorganisms 2024, 12(3), 517; https://doi.org/10.3390/microorganisms12030517 - 04 Mar 2024
Viewed by 771
Abstract
Deep-sea hydrothermal vents have been extensively explored around the globe in the past decades, and the diversity of microbial communities and their ecological functions related to hydrothermal vents have become hotspots in the study of microbial biogeochemistry. However, knowledge of dominant microbial communities [...] Read more.
Deep-sea hydrothermal vents have been extensively explored around the globe in the past decades, and the diversity of microbial communities and their ecological functions related to hydrothermal vents have become hotspots in the study of microbial biogeochemistry. However, knowledge of dominant microbial communities and their unique metabolic characteristics adapting to hydrothermal vents is still limited. In our study, the sediment sample near the Tangyin hydrothermal vent in the southern part of the Okinawa Trough was collected, and the most abundant phyla are Proteobacteria and Desulfobacterota based on the 16S rRNA genes and metagenome sequencing. Metagenomic analysis revealed that methane metabolism, sulfur reduction, and Fe2+ uptake were abundantly distributed in hydrothermal sediment. In addition, most of the metagenomic assembly genomes (MAGs), belonging to Chloroflexota, Desulfobacterota, and Gammaproteobacteria, were found to be involved in methanogenesis, sulfur oxidation/reduction, and ferrous/ferric iron metabolisms. Among these MAGs, the two representative groups (Bathyarchaeia and Thioglobaceae) also showed distinct metabolic characteristics related to carbon, sulfur, and iron to adapt to hydrothermal environments. Our results reveal the dominant microbial populations and their metabolic features in the sediment near the Tangyin hydrothermal fields, providing a better understanding of microbial survival strategies in the extreme environment. Full article
(This article belongs to the Special Issue Marine Microorganisms and Ecology)
Show Figures

Figure 1

11 pages, 2813 KiB  
Article
Pseudidiomarina fusca sp. nov., Isolated from the Surface Seawater of the Western Pacific Ocean
by Yaru Wang, Xiaolei Wang, Xueyu Gao, Jingjing He, Xiaoyu Yang, Yunxiao Zhang, Xiaohua Zhang and Xiaochong Shi
Microorganisms 2024, 12(2), 408; https://doi.org/10.3390/microorganisms12020408 - 18 Feb 2024
Viewed by 692
Abstract
The Gram-negative marine bacterium GXY010T, which has been isolated from the surface seawater of the western Pacific Ocean, is aerobic, non-motile and non-flagellated. Strain GXY010T exhibits growth across a temperature range of 10–42 °C (optimal at 37 °C), pH tolerance [...] Read more.
The Gram-negative marine bacterium GXY010T, which has been isolated from the surface seawater of the western Pacific Ocean, is aerobic, non-motile and non-flagellated. Strain GXY010T exhibits growth across a temperature range of 10–42 °C (optimal at 37 °C), pH tolerance from 7.0 to 11.0 (optimal at 7.5) and a NaCl concentration ranging from 1.0 to 15.0% (w/v, optimal at 5.0%). Ubiquinone-8 (Q-8) was the predominant isoprenoid quinone in strain GXY010T. The dominant fatty acids (>10%) of strain GXY010T were iso-C15:0 (14.65%), summed feature 9 (iso-C17:1 ω9c and/or 10-methyl C16:0) (12.41%), iso-C17:0 (10.85%) and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) (10.41%). Phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), unidentifiable glycolipid (GL) and four non-identifiable aminolipids (AL1-AL4) were the predominant polar lipids of strain GXY010T. The genomic DNA G+C content was identified as a result of 48.0% for strain GXY010T. The strain GXY010T genome consisted of 2,766,857 bp, with 2664 Open Reading Frames (ORFs), including 2586 Coding sequences (CDSs) and 78 RNAs. Strain GXY010T showed Average Nucleotide Identity (ANI) values of 73.4% and 70.6% and DNA–DNA hybridization (DDH) values of 19.2% and 14.5% with reference species Pseudidiomarina tainanensis MCCC 1A02633T (=PIN1T) and Pseudidiomarina taiwanensis MCCC 1A00163T (=PIT1T). From the results of the polyphasic analysis, a newly named species, Pseudidiomarina fusca sp. nov. within the genus Pseudidiomarina, was proposed. The type strain of Pseudidiomarina fusca is GXY010T (=JCM 35760T = MCCC M28199T = KCTC 92693T). Full article
(This article belongs to the Special Issue Marine Microorganisms and Ecology)
Show Figures

Figure 1

14 pages, 1732 KiB  
Article
Polyphasic Characterization and Genomic Insights into an Aerobic Denitrifying Bacterium, Shewanella zhuhaiensis sp. nov., Isolated from a Tidal Flat Sediment
by Yang Liu, Tao Pei, Juan Du and Honghui Zhu
Microorganisms 2023, 11(12), 2870; https://doi.org/10.3390/microorganisms11122870 - 27 Nov 2023
Cited by 1 | Viewed by 766
Abstract
A new, facultatively anaerobic, light-yellow, and rod-shaped bacterium designated as 3B26T isolated from Qi’ao Island’s tidal flat sediment was identified. Strain 3B26T can hydrolyze gelatin, aesculin, and skim milk. The major cellular fatty acids were identified as iso-C15:0, referred [...] Read more.
A new, facultatively anaerobic, light-yellow, and rod-shaped bacterium designated as 3B26T isolated from Qi’ao Island’s tidal flat sediment was identified. Strain 3B26T can hydrolyze gelatin, aesculin, and skim milk. The major cellular fatty acids were identified as iso-C15:0, referred to as summed feature 3, and C16:0; the polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, and phospholipid; and the quinones contained Q-7, Q-8, MK-7, and MMK7. The genomic size of strain 3B26T was 4,682,650 bp, and its genomic DNA G + C content was 54.8%. While a 16S rRNA gene-based phylogenetic analysis confirmed that strain 3B26T belongs to the genus Shewanella, both phylogenomic inference and genomic comparison revealed that strain 3B26T is distinguishable from its relatives, and digital DNA-DNA hybridization (dDDH) values of 24.4–62.6% and average nucleotide identities (ANIs) of 83.5–95.6% between them were below the 70% dDDH and 96% ANI thresholds for bacterial species delineation. Genomic functional analysis demonstrated that strain 3B26T possesses complete gene clusters of eicosapentaenoic acid biosynthesis and denitrification. Based on the evidence above, strain 3B26T is considered to represent a novel species of the genus Shewanella, and the name Shewanella zhuhaiensis sp. nov. (type strain 3B26T = GDMCC 1.2057T = KCTC 82339T) is proposed. Full article
(This article belongs to the Special Issue Marine Microorganisms and Ecology)
Show Figures

Figure 1

16 pages, 2812 KiB  
Article
Marine Bacterial Community Structures of Selected Coastal Seawater and Sediment Sites in Qatar
by Shimaa S. El-Malah, Kashif Rasool, Khadeeja Abdul Jabbar, Muhammad Umar Sohail, Husam Musa Baalousha and Khaled A. Mahmoud
Microorganisms 2023, 11(12), 2827; https://doi.org/10.3390/microorganisms11122827 - 21 Nov 2023
Viewed by 938
Abstract
Severe environmental conditions can have a diverse impact on marine microorganisms, including bacteria. This can have an inevitable impact on the biofouling of membrane-based desalination plants. In this work, we have utilized indicator bacteria such as total coliform, fecal coliform, and Pseudomonas aeruginosa [...] Read more.
Severe environmental conditions can have a diverse impact on marine microorganisms, including bacteria. This can have an inevitable impact on the biofouling of membrane-based desalination plants. In this work, we have utilized indicator bacteria such as total coliform, fecal coliform, and Pseudomonas aeruginosa, as well as 16S rRNA sequencing, to investigate the impact of environmental conditions and spatial variations on the diversity of bacterial communities in the coastal waters and sediments from selected sites in Qatar. The concentration levels of indicator bacteria were affected by increasing temperatures and pH, and by decreasing salinity of seawater samples. Diversity indices and the molecular phylogeny demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria were the dominant phyla in all locations. The most abundant operational taxonomic units (OTUs) at the family level were from Flavobacteriaceae (27.07%, 4.31%) and Rhodobacteraceae (22.51%, 9.86%) in seawater and sediment, respectively. Alphaproteobacteria (33.87%, 16.82%), Flavobacteria (30.68%, 5.84%), and Gammaproteobacteria (20.35%, 12.45%) were abundant at the species level in both seawater and sediment, while Clostridia (13.72%) was abundant in sediment only. The results suggest that sediment can act as a reservoir for indicator bacteria, with higher diversity and lower abundance compared to seawater. Full article
(This article belongs to the Special Issue Marine Microorganisms and Ecology)
Show Figures

Figure 1

Back to TopTop