Probiotics, Prebiotics and Functional Foods: Health Benefits and Biosafety, 2nd Edition

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 8623

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
Interests: exopolysaccharides; fermentation and fermented products; halal functional foods; milk and fermented milk products (yogurt & cheese); probiotics and functional foods; probiotics and its impact on foodborne pathogens; transforming traditional foods into healthy products
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our previous Special Issue "Probiotics, Prebiotics and Functional Foods: Health Benefits and Biosafety".

The gut microbiota is crucial for maintaining human health and wellbeing. Probiotics play a vital role in improving the quality of the gut microbiota. Clinical studies have revealed the various health benefits of the consumption of probiotics (e.g., reduction in the duration and occurrence of diarrhea, alleviation of symptoms of lactose intolerance, reduction in the incidence of pathogenic infection, stimulation of the immune system, and regulation of the inflammatory response). The selection of potential probiotic strains that possess the physiological capacity of performing well in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT and adhere to the intestinal mucosa. Probiotics are employed to produce fermented food products possessing multiple functional properties. These functional food products exert various health benefits.

This Special Issue focuses on the characterization of new and novel potential probiotics, the health benefits of functional foods produced by probiotic microorganisms (after in vitro digestion), the identification of bioactive compounds in functional products, the interactions between probiotics and prebiotics in functional products, the capabilities of probiotics in food safety as biopreservatives, and eliminating risk compounds from food products.

Dr. Mutamed Ayyash
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • probiotics
  • prebiotics
  • functional foods
  • fermented foods
  • health benefits

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 3691 KiB  
Article
Limosilactobacillus reuteri HCS02-001 Attenuates Hyperuricemia through Gut Microbiota-Dependent Regulation of Uric Acid Biosynthesis and Excretion
by Akbar Hussain, Binqi Rui, Hayan Ullah, Panpan Dai, Kabir Ahmad, Jieli Yuan, Yinhui Liu and Ming Li
Microorganisms 2024, 12(4), 637; https://doi.org/10.3390/microorganisms12040637 - 22 Mar 2024
Viewed by 744
Abstract
Hyperuricemia is a prevalent metabolic disorder that arises from abnormal purine metabolism and reduced excretion of uric acid (UA). The gut microbiota plays a significant role in the biosynthesis and excretion of UA. Probiotics capable of purine degradation possess the potential to prevent [...] Read more.
Hyperuricemia is a prevalent metabolic disorder that arises from abnormal purine metabolism and reduced excretion of uric acid (UA). The gut microbiota plays a significant role in the biosynthesis and excretion of UA. Probiotics capable of purine degradation possess the potential to prevent hyperuricemia. Our study aimed to screen probiotics in areas with abundant dairy products and longevity populations in China, which could attenuate the level of UA and explore the underlying mechanism. In this study, twenty-three lactic acid bacteria isolated from healthy Chinese infant feces and traditional fermented foods such as hurood and lump milk were evaluated for the ability to tolerance acid, bile, artificial gastric juice, and artificial intestinal juice to determine the potential of the candidate strains as probiotics. Eight strains were identified as possessing superior tolerance to simulated intestinal conditions and were further analyzed by high-performance liquid chromatography (HPLC), revealing that Limosilactobacillus reuteri HCS02-001 (Lact-1) and Lacticaseibacillus paracasei HCS17-040 (Lact-2) possess the most potent ability to degrade purine nucleosides. The effect of Lact-1 and Lact-2 on hyperuricemia was evaluated by intervening with them in the potassium oxonate and adenine-induced hyperuricemia Balb/c mice model in vivo. Our results showed that the level of serum UA in hyperuricemic mice can be efficiently reduced via the oral administration of Lact-1 (p < 0.05). It significantly inhibited the levels of liver inflammatory cytokines and hepatic xanthine oxidase through a TLR4/MyD88/NF-κB pathway across the gut–liver axis. Furthermore, UA transporters ABCG2 and SLC2A9 were substantially upregulated by the intervention of this probiotic. Fecal ATP levels were significantly induced, while fecal xanthine dehydrogenase and allantoinase levels were increased following probiotics. RNA sequencing of HT-29 cells line treated with Lact-1 and its metabolites demonstrated significant regulation of pathways related to hyperuricemia. In summary, these findings demonstrate that Limosilactobacillus reuteri HCS02-001 possesses a capacity to ameliorate hyperuricemia by inhibiting UA biosynthesis via enhancing gastrointestinal barrier functions and promoting UA removal through the upregulation of urate transporters, thereby providing a basis for the probiotic formulation by targeting the gut microbiota. Full article
Show Figures

Figure 1

19 pages, 8082 KiB  
Article
Evaluation of the Immunity Responses in Mice to Recombinant Bacillus subtilis Displaying Newcastle Disease Virus HN Protein Truncations
by Jianzhen Li, Miao Yang, Bin Chen, Zhenhua Wang, Yuheng Cao, Yang Yang, Mengwei Zhang, Dongmei Zhang, Xueqin Ni, Yan Zeng and Kangcheng Pan
Microorganisms 2024, 12(3), 439; https://doi.org/10.3390/microorganisms12030439 - 21 Feb 2024
Viewed by 1117
Abstract
Bacillus subtilis, a probiotic bacterium with engineering potential, is widely used for the expression of exogenous proteins. In this study, we utilized the integrative plasmid pDG364 to integrate the hemagglutinin–neuraminidase (HN) gene from Newcastle disease virus (NDV) into the genome [...] Read more.
Bacillus subtilis, a probiotic bacterium with engineering potential, is widely used for the expression of exogenous proteins. In this study, we utilized the integrative plasmid pDG364 to integrate the hemagglutinin–neuraminidase (HN) gene from Newcastle disease virus (NDV) into the genome of the B. subtilis 168 model strain. We successfully constructed a recombinant B. subtilis strain (designated B. subtilis RH) that displays a truncated HN antigen fragment on the surface of its spores and further evaluated its immunogenic effects in mice. Using ELISA, we quantified the levels of IgG in serum and secretory IgA (sIgA) in intestinal contents. The results revealed that the recombinant B. subtilis RH elicited robust specific mucosal and humoral immune responses in mice. Furthermore, B. subtilis RH demonstrated potential mucosal immune adjuvant properties by fostering the development of immune organs and augmenting the number of lymphocytes in the small intestinal villi. Additionally, the strain significantly upregulated the relative expression of inflammatory cytokines such as IL-1β, IL-6, IL-10, TNF-α, and IFN-γ in the small intestinal mucosa. In conclusion, the B. subtilis RH strain developed in this study exhibits promising mucosal immunogenic effects. It holds potential as a candidate for an anti-NDV mucosal subunit vaccine and offers a novel preventive strategy for the poultry industry against this disease. Full article
Show Figures

Figure 1

12 pages, 998 KiB  
Article
Evaluation of GABA Production by Alginate-Microencapsulated Fresh and Freeze-Dried Bacteria Enriched with Monosodium Glutamate during Storage in Chocolate Milk
by Hebat Allah Ibrahim Youssef, Paola Vitaglione, Rosalia Ferracane, Jumana Abuqwider and Gianluigi Mauriello
Microorganisms 2023, 11(11), 2648; https://doi.org/10.3390/microorganisms11112648 - 28 Oct 2023
Viewed by 1029
Abstract
Two strains of γ-aminobutyric acid (GABA) producing bacteria, L. brevis Y1 and L. plantarum LM2, were microencapsulated in sodium alginate with two concentrations (1% and 2%) of monosodium glutamate (MSG) by using vibrating technology. The mix of both species was microencapsulated both in [...] Read more.
Two strains of γ-aminobutyric acid (GABA) producing bacteria, L. brevis Y1 and L. plantarum LM2, were microencapsulated in sodium alginate with two concentrations (1% and 2%) of monosodium glutamate (MSG) by using vibrating technology. The mix of both species was microencapsulated both in fresh and freeze-dried form. After 0, 1, 2, and 4 weeks of storage at 4 °C in quarter strength Ringer’s solution, the microcapsules were subjected to cell viable counting and sub-cultured in MRS at 37° for 24 h. The MRS cultures were analyzed for the GABA content. The amount of GABA produced per CFU of MRS inoculum was then calculated. Only the 4-week-old microcapsules were used to inoculate a chocolate milk drink with the aim of obtaining a functionalized drink containing viable probiotic cells and GABA after a 1-week incubation at 4 °C. Therefore, the GABA production in chocolate milk per CFU of the probiotic culture after the incubation time was calculated. Results of the GABA analysis by liquid chromatography mass spectrometry of the MRS sub-cultures showed no significant difference (p > 0.05) in GABA yield between 1% and 2% MSG for the microcapsules containing fresh cells. On the contrary, a significant difference (p < 0.05) in productivity along the storage was registered. Microcapsules containing freeze-dried cells showed significant differences (p < 0.05) in GABA yield between 1% and 2% MSG only after 2 and 4 weeks of storage. A significant difference (p < 0.05) in GABA yield between the storage time was found only for the trials with 2% MSG for freeze-dried cells. The synthesis of GABA in chocolate milk significantly decreased (p < 0.05) only for fresh cells when comparing 2% with 1% MSG. In conclusion, a 1-month storage of microcapsules containing both culture forms, fresh and freeze-dried, did not affect GABA production. Full article
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 1081 KiB  
Review
The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties
by Nicoleta-Maricica Maftei, Cosmin Raducu Raileanu, Alexia Anastasia Balta, Lenuta Ambrose, Monica Boev, Denisa Batîr Marin and Elena Lacramioara Lisa
Microorganisms 2024, 12(2), 234; https://doi.org/10.3390/microorganisms12020234 - 23 Jan 2024
Cited by 1 | Viewed by 5098
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat [...] Read more.
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics’ nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field. Full article
Show Figures

Figure 1

Back to TopTop