Low-Temperature Thermochronology and Its Applications to Tectonics

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Geochemistry and Geochronology".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 2535

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100044, China
Interests: low-temperature thermochronology; basin-range coupling; paleomagnetism

E-Mail Website
Guest Editor
Institute of Geology and Geophysics, China Academy of Sciences, Beijing 100029, China
Interests: low-temperature thermochronology; mountain buiding process; (U-Th)/He geochronology; fission track geochronology

E-Mail Website
Guest Editor
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100190, China
Interests: low-temperature thermochronology; tectonic geomorphology; tectonics

Special Issue Information

Dear Colleagues,

Low-temperature thermochronology is a useful method for deciphering the tectonics and uplift history of orogenic belts through obtaining the cooling history of rocks. During the past several decades, many related papers have been published. With the development of new technologies, such as (U-Th)/He dating, low-temperature thermochronology is more widely employed in geology. This Special Issue plans to give an overview of the most recent advances in low-temperature thermochronology and its applications to tectonics.

Potential topics include, but are not limited to: reviews of low-temperature thermochronology; new research methods; new progress in obtaining cooling and exhumation history; new insights into mountain and plateau uplift; new constraints of fault activity; the preservation and denudation of ore deposits; and future perspectives for low-temperature thermochronology.

Prof. Dr. Dongliang Liu
Dr. Lin Wu
Prof. Dr. Jingen Dai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • low-temperature thermochronology
  • tectonics
  • exhumation
  • cooling history
  • basin–range coupling
  • fault activity
  • preservation and denudation of ore deposits

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2675 KiB  
Article
Mesozoic and Cenozoic Tectono-Thermal Reconstruction of the Southern Ordos Basin: Revealed by Apatite Fission Track and (U-Th)/He Dating
by Peng Gao, Jie Hu and Shengbiao Hu
Minerals 2024, 14(2), 172; https://doi.org/10.3390/min14020172 - 05 Feb 2024
Viewed by 883
Abstract
The Ordos Basin is rich in oil and gas resources in the Paleozoic strata. The southern part of the basin boasts a thick Paleozoic sedimentary sequence, enriched organic matter, favorable sedimentary facies, and hydrocarbon source rocks with an over-mature thermal evolution stage. However, [...] Read more.
The Ordos Basin is rich in oil and gas resources in the Paleozoic strata. The southern part of the basin boasts a thick Paleozoic sedimentary sequence, enriched organic matter, favorable sedimentary facies, and hydrocarbon source rocks with an over-mature thermal evolution stage. However, the lack of in-depth study of the tectono-thermal evolution in the southern basin limits regional oil and gas exploration. In this study, drill core and outcrop samples were collected from the Shanbei Slope and the Weibei Uplift, respectively. These samples were subjected to apatite fission track (AFT) and (U-Th)/He dating (AHe). The results were used to reconstruct the thermal history of the southern basin, calculate exhumation rates, and analyze the tectonic evolution of the basin. The seven annealed AFT data values from the Shanbei Slope range from 21.4 to 52.8 Ma, with mean track lengths of 13.24 μm, and the twelve unannealed AFT data values from the Weibei Uplift range from 111.9 to 204.6 Ma. The seven AHe data values from the Shanbei Slope range from 17.0 to 31.8 Ma, and the eight AHe data values from the Weibei Uplift range from 31.7 to 47.5 Ma. The thermal history is characterized by a prolonged phase of burial and heating from the Triassic to the Late Early Cretaceous, followed by a phase of uplift and cooling that continued into the Cenozoic. This cooling phase exhibits three distinct stages with varying rates of uplift and cooling. According to the dating results, the cooling timing of the southern basin was earlier than that of the central part, and the southern basin experienced higher uplift rates during the Paleogene than in other periods of the Cenozoic. This may be attributed to the far-field effects of the collision between the Indian Plate and the Eurasian Plate during the Paleogene. Full article
(This article belongs to the Special Issue Low-Temperature Thermochronology and Its Applications to Tectonics)
Show Figures

Figure 1

19 pages, 4085 KiB  
Article
Meso–Cenozoic Exhumation in the South Qinling Shan (Central China) Recorded by Detrital Apatite Fission-Track Dating of Modern River Sediments
by Xu Lin, Jing Liu-Zeng, Lin Wu, Soares Jose Cleber, Dongliang Liu, Jingen Dai, Chengwei Hu, Xiaokang Chen, Lingling Li and Liyu Zhang
Minerals 2023, 13(10), 1314; https://doi.org/10.3390/min13101314 - 11 Oct 2023
Cited by 1 | Viewed by 1052
Abstract
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of [...] Read more.
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of the development of the Yellow and Yangtze Rivers. Previous studies have predominantly focused on bedrock analysis in the Qinling Shan. However, modern fluvial detrital samples offer a more extensive range of thermal history information. Therefore, we gathered modern fluvial debris samples from the Hanjiang River, which is the largest river in the South Qinling Shan. Subsequently, we conducted apatite fission-track analysis using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method. A total of 214 valid track ages were obtained, with an age distribution ranging from 9.5 to 334.0 Ma. The Density Plotter software was employed to decompose the data and generate four prominent age peaks: 185, 103, 69, 35, and 12 Ma. The exhumation events of the Early Jurassic (185 Ma) and Cretaceous (103–69 Ma) in the Southern Qinling Shan were strongly influenced by the collision between the South China Block and the North China Craton, as well as the subduction of the West Pacific Plate, respectively. The far-field effect of the collision between the Indian Plate and the southern Asian continent influenced the exhumation of the South Qinling Shan during the Late Eocene (35 Ma) and Middle Miocene (12 Ma), respectively. In conjunction with the reported findings, we comprehensively analyzed the geological implications of the Mesozoic and Cenozoic exhumations of the Qinling Shan. The Qinling Shan emerged as a watershed between the Ordos and Sichuan Basins in the early Mesozoic and Cenozoic, respectively. However, the exhumation and expansion of the Tibetan Plateau has forced the Yangtze River to flow eastward, resulting in its encounter with the South Qinling Shan in the late Cenozoic. The exhumation of the Qinling Shan has resulted in fault depression in the southern Ordos Basin. This geological process has also contributed to the widespread arid climatic conditions in the basin. During the Miocene, the Yellow River experienced limited connectivity due to a combination of structural and climatic factors. As a result, the Qinling Shan served as an obstacle, dividing the connected southern Yangtze River from the northern segment of the Yellow River during the late Cenozoic era. Full article
(This article belongs to the Special Issue Low-Temperature Thermochronology and Its Applications to Tectonics)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

1. Title: Meso-Cenozoic exhumation in the South Qinling Shan (Central China) recorded by detrital apatite fission-track dating of modern river sediments

Authors: Xu Lin et al.

Back to TopTop