Rice Genetics and Molecular Design Breeding

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 1633

Special Issue Editors

State Key Laboratory of Rice Biology, China National Rice Research Institute, No.28 Shuidaosuo Rd., Fuyang, Zhejiang 311400, China
Interests: QTL mapping and genetic analysis of rice-important agronomic traits; gene cloning and function analysis of rice seed and organ size; construction and utilization of rice germplasm resource bank; rice molecular design breeding by CRISPR-Cas9 and MAS
Special Issues, Collections and Topics in MDPI journals
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
Interests: molecular physiology of crops; abiotic stress; crop molecular genetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Rice is an important staple crop in the world and also a model plant of monocotyledons. Identifying, mining and modifying the regulatory genes and their elite alleles of important agronomic traits, including plant type, yield, quality, resistance and nutrient efficiency,and exploring the corresponding molecular regulation mechanism, will be conducive to enriching the genetic regulation network and carrying out molecular design breeding. Especially in recent years, the gene editing technology has brought convenience to rice biological breeding and greatly reduced the cycle of rice variety improvement. This special issue of Plants will focus on the genetic analysis, physiological and biochemical, molecular assisted selection and biological breeding of important trait regulatory genes or alleles in rice.

Dr. Jiang Hu
Dr. Dawei Xue
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rice
  • important agronomic traits
  • genetic analysis
  • gene editing
  • molecular design breeding

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 7192 KiB  
Article
Characterization of the Fatty Acyl-CoA Reductase (FAR) Gene Family and Its Response to Abiotic Stress in Rice (Oryza sativa L.)
by Danni Zhou, Mingyu Ding, Shuting Wen, Quanxiang Tian, Xiaoqin Zhang, Yunxia Fang and Dawei Xue
Plants 2024, 13(7), 1010; https://doi.org/10.3390/plants13071010 - 1 Apr 2024
Viewed by 671
Abstract
Fatty acyl-CoA reductase (FAR) is an important NADPH-dependent enzyme that can produce primary alcohol from fatty acyl-CoA or fatty acyl-carrier proteins as substrates. It plays a pivotal role in plant growth, development, and stress resistance. Herein, we performed genome-wide identification and expression analysis [...] Read more.
Fatty acyl-CoA reductase (FAR) is an important NADPH-dependent enzyme that can produce primary alcohol from fatty acyl-CoA or fatty acyl-carrier proteins as substrates. It plays a pivotal role in plant growth, development, and stress resistance. Herein, we performed genome-wide identification and expression analysis of FAR members in rice using bioinformatics methods. A total of eight OsFAR genes were identified, and the OsFARs were comprehensively analyzed in terms of phylogenetic relationships, duplication events, protein motifs, etc. The cis-elements of the OsFARs were predicted to respond to growth and development, light, hormones, and abiotic stresses. Gene ontology annotation analysis revealed that OsFAR proteins participate in biological processes as fatty acyl-CoA reductase during lipid metabolism. Numerous microRNA target sites were present in OsFARs mRNAs. The expression analysis showed that OsFARs were expressed at different levels during different developmental periods and in various tissues. Furthermore, the expression levels of OsFARs were altered under abiotic stresses, suggesting that FARs may be involved in abiotic stress tolerance in rice. The findings presented here serve as a solid basis for further exploring the functions of OsFARs. Full article
(This article belongs to the Special Issue Rice Genetics and Molecular Design Breeding)
Show Figures

Figure 1

18 pages, 3803 KiB  
Article
The ldp1 Mutation Affects the Expression of Auxin-Related Genes and Enhances SAM Size in Rice
by Zhanglun Sun, Tianrun Mei, Xuan Tan, Tingting Feng, Ruining Li, Sumei Duan, Heming Zhao, Yafeng Ye, Binmei Liu, Aifeng Zhou, Hao Ai and Xianzhong Huang
Plants 2024, 13(6), 759; https://doi.org/10.3390/plants13060759 - 7 Mar 2024
Viewed by 762
Abstract
Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 ( [...] Read more.
Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 (ldp1) mutant produced from the Wuyunjing 7 (WYJ7) genotype, which displayed significant relative increases in panicle length, number of primary and secondary branches, number of grains per panicle, grain width, and grain yield per plant. Scanning electron microscopy results showed that the shoot apical meristem (SAM) of ldp1 was relatively larger at the bract stage (BM), with a significantly increased number of primary (PBM) and secondary branch (SBM) meristematic centers, indicating that the ldp1 mutation affects early stages in SAM development Comparative RNA-Seq analysis of meristem tissues from WYJ7 and ldp1 at the BM, PBM, and SBM developmental stages indicated that the number of differentially expressed genes (DEGs) were highest (1407) during the BM stage. Weighted gene coexpression network analysis (WGCNA) revealed that genes in one module (turquoise) are associated with the ldp1 phenotype and highly expressed during the BM stage, suggesting their roles in the identity transition and branch differentiation stages of rice inflorescences. Hub genes involved in auxin synthesis and transport pathways, such as OsAUX1, OsAUX4, and OsSAUR25, were identified. Moreover, GO and KEGG analysis of the DEGs in the turquoise module and the 1407 DEGs in the BM stage revealed that a majority of genes involved in tryptophan metabolism and auxin signaling pathway were differentially expressed between WYJ and ldp1. The genetic analysis indicated that the ldp1 phenotype is controlled by a recessive monogene (LDP1), which was mapped to a region between 16.9 and 18.1 Mb on chromosome seven. This study suggests that the ldp1 mutation may affect the expression of key genes in auxin synthesis and signal transduction, enhance the size of SAM, and thus affect panicle development. This study provides insights into the molecular regulatory network underlying rice panicle morphogenesis and lays an important foundation for further understanding the function and molecular mechanism of LDP1 during panicle development. Full article
(This article belongs to the Special Issue Rice Genetics and Molecular Design Breeding)
Show Figures

Figure 1

Back to TopTop