Advances in Cereal Crops Breeding II

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Molecular Biology".

Deadline for manuscript submissions: closed (20 August 2022) | Viewed by 2335

Special Issue Editor


E-Mail Website
Guest Editor
Department of Genetic Resources of Oat, Barley, Rye, N. I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
Interests: Avena genetic resources; taxonomy and phylogeny of genus Avena; genetics; breeding; agronomy; plant industry; agrobiotechnology of cereals; biotic and abiotic resistance; grain quality of cereals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cereals are the main food and feed crops on our planet: wheat, rice, and corn occupy three-quarters of the total acreage. The vast majority of plant breeders and plant geneticists in the world are engaged in cereals breeding. The breeding methods are chosen on the basis of the biology of the crop (self-pollinating or cross-pollinating), the level of development of genetic research for a particular crop, and the country where the breeding is carried out. The history of crop breeding is long, beginning at the dawn of human civilization with the agricultural revolution and the creation of primitive landraces, continuing with the discovery of the genetic laws of G. Mendel and the creation of the first primitive (obsolete) breeding varieties of plants at the beginning of the twentieth century, and then further progressing with the development of genetics yielding heterotic hybrids as well as physical and chemical crop mutants. The successes of biotechnology have made it possible to expand the breeding possibilities to obtain interspecies and intergenus hybrids, and now the development of molecular biology and genomics has completely overcome the barriers limiting the breeding of any living organisms, while methods for the genome editing of agricultural crops are still being improved to achieve higher levels of accuracy. All the above methods require source material (i.e., the genetic materials of cereals and their wild relatives), maintained ex situ in gene banks that are repositories of valuable alleles for improving varieties and hybrids of crops using genome-editing tools. Studies aimed at the finding genes and quantitative trait loci (QTLs) that affect the main breeding traits, and at identifying the desired allelic variants, as well as reviews summarizing these data are within the scope of this Special Issue. In addition, new data from traditional agronomic breeding methods, as well as data from traditional and new breeding strategies related to biotic and abiotic resistance, the quality of grain production and green mass, and the complex adaptability of plants on Earth in the context of climate change are of great interest.

Prof. Dr. Igor G. Loskutov
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • agrobiotechnology
  • biotic and abiotic resistance
  • breeding
  • cultivar
  • genetic resources
  • genome editing
  • germplasm
  • grain and green mass quality
  • landraces
  • QTL
  • site-directed mutagenesis

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 651 KiB  
Article
Effects of Zinc, Copper and Iron Oxide Nanoparticles on Induced DNA Methylation, Genomic Instability and LTR Retrotransposon Polymorphism in Wheat (Triticum aestivum L.)
by Kamil Haliloğlu, Aras Türkoğlu, Özge Balpınar, Hayrunnisa Nadaroğlu, Azize Alaylı and Peter Poczai
Plants 2022, 11(17), 2193; https://doi.org/10.3390/plants11172193 - 24 Aug 2022
Cited by 12 | Viewed by 1974
Abstract
Nanomaterials with unique and diverse physico-chemical properties are used in plant science since they improve plant growth and development and offer protection against biotic and abiotic stressors. Previous studies have explored the effects of such nanomaterials on different plant mechanisms, but information about [...] Read more.
Nanomaterials with unique and diverse physico-chemical properties are used in plant science since they improve plant growth and development and offer protection against biotic and abiotic stressors. Previous studies have explored the effects of such nanomaterials on different plant mechanisms, but information about the effects of nanomaterials on induced DNA methylation, genomic instability and LTR retrotransposon polymorphism in wheat is lacking. Therefore, the present study highlights the key role of nanoparticles in DNA methylation and polymorphism in wheat by investigating the effects of ZnO, CuO and γ-Fe3O4 nanoparticles (NPs) on mature embryo cultures of wheat (Triticum aestivum L.). Nanoparticles were supplemented with Murashige and Skoog (MS) basal medium at normal (1X), double (2X) and triple (3X) concentrations. The findings revealed different responses to the polymorphism rate depending on the nanoparticle type and concentration. Genomic template stability (GTS) values were used to compare the changes encountered in iPBS profiles. ZnO, CuO and γ-Fe3O4 NPs increased the polymorphism rate and cytosine methylation compared to the positive control while reducing GTS values. Moreover, non-γ-Fe3O4 NPs treatments and 2X ZnO and CuO NP treatments yielded higher polymorphism percentages in both MspI- and HpaII-digested CRED-iPBS assays and were thus classified as hypermethylation when the average polymorphism percentage for MspI digestion was considered. On the other hand, the 3X concentrations of all nanoparticles decreased HpaII and MspI polymorphism percentages and were thus classified as hypomethylation. The findings revealed that MS medium supplemented with nanoparticles had epigenetic and genotoxic effects. Full article
(This article belongs to the Special Issue Advances in Cereal Crops Breeding II)
Show Figures

Figure 1

Back to TopTop