Soil Fertility Management for Plant Growth and Development

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant–Soil Interactions".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 1181

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Efficient Utilization of Arid and Semi-ARID Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
Interests: soil fertility; crop productivity

Special Issue Information

Dear Colleagues,

Soil fertility management is an important factor in plant growth and development, including crop productivity and forestry carbon storage. Soil properties, fertilization, rotation, tillage and climate can also have significant impacts here.

This Special Issue will present the most recent research and advances in this field. It aims to provide selected contributions on advances in soil fertility management for plant growth and the development of various plants with respect to scientific theories, agriculture and forestry science.

Topics of interest include:

  • Soil physical, chemical, biological factors and soil health;
  • Soil fertility with crop growth and productivity;
  • Soil fertility evolution with fertilizations;
  • Soil fertility monitoring with long-term field experiments;
  • Changes in soil carbon sequestration and crop productivity with rotation and tillage;
  • Carbon storage in soil–forestry systems.
  • Soil fertility in arable, forest and grassland areas.

Prof. Dr. Minggang Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • soil fertility
  • crop growth and productivity
  • soil health
  • forestry carbon storage

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1912 KiB  
Article
Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco (Nicotiana tabacum L.)
by Xu Yang, Ke Zhang, Zhiming Qi, Hiba Shaghaleh, Chao Gao, Tingting Chang, Jie Zhang and Yousef Alhaj Hamoud
Plants 2024, 13(10), 1328; https://doi.org/10.3390/plants13101328 (registering DOI) - 11 May 2024
Viewed by 189
Abstract
Southwestern China is receiving excessive chemical fertilizers to meet the challenges of continuous cropping. These practices are deteriorating the soil environment and affecting tobacco (Nicotiana tabacum L.) yield and quality adversely. A novel microbially enriched biochar-based fertilizer was synthesized using effective microorganisms, [...] Read more.
Southwestern China is receiving excessive chemical fertilizers to meet the challenges of continuous cropping. These practices are deteriorating the soil environment and affecting tobacco (Nicotiana tabacum L.) yield and quality adversely. A novel microbially enriched biochar-based fertilizer was synthesized using effective microorganisms, tobacco stalk biochar and basal fertilizer. A field-scale study was conducted to evaluate the yield response of tobacco grown on degraded soil amended with our novel biochar-based microbial fertilizer (BF). Four treatments of BF (0%, 1.5%, 2.5% and 5%) were applied in the contaminated field to grow tobacco. The application of BF1.5, BF2.5 and BF5.0 increased the available water contents by 9.47%, 1.18% and 2.19% compared to that with BF0 respectively. Maximum growth of tobacco in terms of plant height and leaf area was recorded for BF1.5 compared to BF0. BF1.5, BF2.5 and BF5.0 increased SPAD by 13.18–40.53%, net photosynthetic rate by 5.44–60.42%, stomatal conductance by 8.33–44.44%, instantaneous water use efficiency by 55.41–93.24% and intrinsic water use efficiency by 0.09–24.11%, while they decreased the intercellular CO2 concentration and transpiration rate by 3.85–6.84% and 0.29–47.18% relative to BF0, respectively (p < 0.05). The maximum increase in tobacco yield was recorded with BF1.5 (23.81%) compared to that with BF0. The present study concludes that the application of BF1.5 improves and restores the degraded soil by improving the hydraulic conductivity and by increasing the tobacco yield. Full article
(This article belongs to the Special Issue Soil Fertility Management for Plant Growth and Development)
Show Figures

Figure 1

21 pages, 2649 KiB  
Article
Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination
by Víctor Ferrer-Villasmil, Cecilia Fuentealba, Pablo Reyes-Contreras, Rafael Rubilar, Gustavo Cabrera-Barjas, Gastón Bravo-Arrepol and Danilo Escobar-Avello
Plants 2024, 13(6), 789; https://doi.org/10.3390/plants13060789 - 11 Mar 2024
Viewed by 753
Abstract
This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the [...] Read more.
This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the physicochemical parameters of the growing media, the germination rate, and the mean fresh and dry weights of seedlings. We used the Munoo-Liisa Vitality Index (MLVI) test to evaluate the phytotoxicity of the bark alone and when mixed with commercial substrates. Generally, the best mixture for seed growth was 75% extracted eucalyptus bark fiber and 25% commercial substrates. In particular, the 75E-25P (peat) mixture is a promising substitute for seedling growth of Pinus radiata, achieving up to 3-times higher MLVI than the control peat alone. For Quillaja saponaria, the best growth substrate was the 50E-50C (coconut fiber) mixture, which had the most significant MLVI values (127%). We added chitosan and alginate-encapsulated fulvic acid phytostimulants to improve the performance of the substrate mixtures. The fulvic acid, encapsulated or not, significantly improved MLVI values in Q. saponaria species and P. radiata in concentrations between 0.05 and 0.1% w/v. This study suggests that mixtures with higher levels of extracted fiber are suitable for growing forest species, thus promoting the application of circular economy principles in forestry. Full article
(This article belongs to the Special Issue Soil Fertility Management for Plant Growth and Development)
Show Figures

Figure 1

Back to TopTop