Role of Auxin in Plant Growth and Development

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Development and Morphogenesis".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 12891

Special Issue Editor


E-Mail Website
Guest Editor
FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
Interests: auxin signaling; transmembrane kinases; post-translational modification; plant cell fate; plant development

Special Issue Information

Dear Colleagues,

Auxin is considered one of the most important plant hormones and has attracted intense research interest in recent decades. Auxin metabolism and signal transduction are implicated in wide-ranging aspects of plant development and responses to environmental cues.

Sessile plants in nature have developed complex strategies to adapt their growth and development to changing and challenging environments. The trade-off between growth and defense provides an optimal strategy for the life history of angiosperm plants. Plants deal with extreme environmental conditions normally at the expense of growth, or expedite the growth in favorable conditions through suppression of stress responses. This suggests that developmental regulation in plants is tightly linked with environmental conditions; however, the mechanisms involving the mutual dependence between growth and the environment are far from being fully understood. Auxin, as a growth hormone in plants, regulates nearly all aspects of growth and development in a concentration-dependent manner. It has been widely reported that auxin participates in the regulation of plant development in response to environmental cues, such as light and temperature. Recent studies showed that auxin also plays essential roles in many stress responses, such as salinity and drought responses. Nevertheless, it still remains to be elucidated how environmental cues regulate plant growth via auxin metabolism and signal transduction, and also how auxin signaling participates in environmental responses through crosstalk with other signaling mechanisms. Further insights into these questions would provide new strategies to aid in crop breeding, by manipulating the growth and defense trade-offs in plants.

To illustrate the recent mechanisms of auxin regulation of the crosstalk between plants and environments, this Special Issue welcomes the submission of manuscripts including original research, brief research reports, and review articles in (but not limited to) the following areas:

  • New regulatory mechanisms of auxin metabolism and transport by environmental cues;
  • The transcriptional and non-transcriptional regulation of auxin signaling components by environmental cues;
  • Auxin regulation of environmental responses through crosstalk with other signaling pathways;
  • Applied research concerning the growth and defense trade-off controlled by auxin in crops;
  • Co-evolution of auxin signaling and environmental responses in plants.
Prof. Dr. Tongda Xu

Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • auxin transport
  • auxin metabolism
  • auxin signaling
  • environmental adaptation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 8115 KiB  
Article
The Role of FveAFB5 in Auxin-Mediated Responses and Growth in Strawberries
by Xuhui Wang, Shuo Feng, Jiangshan Luo, Shikui Song, Juncheng Lin, Yunhe Tian, Tongda Xu and Jun Ma
Plants 2024, 13(8), 1142; https://doi.org/10.3390/plants13081142 - 19 Apr 2024
Viewed by 1176
Abstract
Auxin is a crucial hormone that regulates various aspects of plant growth and development. It exerts its effects through multiple signaling pathways, including the TIR1/AFB-based transcriptional regulation in the nucleus. However, the specific role of auxin receptors in determining developmental features in the [...] Read more.
Auxin is a crucial hormone that regulates various aspects of plant growth and development. It exerts its effects through multiple signaling pathways, including the TIR1/AFB-based transcriptional regulation in the nucleus. However, the specific role of auxin receptors in determining developmental features in the strawberry (Fragaria vesca) remains unclear. Our research has identified FveAFB5, a potential auxin receptor, as a key player in the development and auxin responses of woodland strawberry diploid variety Hawaii 4. FveAFB5 positively influences lateral root development, plant height, and fruit development, while negatively regulating shoot branching. Moreover, the mutation of FveAFB5 confers strong resistance to the auxinic herbicide picloram, compared to dicamba and quinclorac. Transcriptome analysis suggests that FveAFB5 may initiate auxin and abscisic acid signaling to inhibit growth in response to picloram. Therefore, FveAFB5 likely acts as an auxin receptor involved in regulating multiple processes related to strawberry growth and development. Full article
(This article belongs to the Special Issue Role of Auxin in Plant Growth and Development)
Show Figures

Figure 1

17 pages, 8605 KiB  
Article
Deficiency of Auxin Efflux Carrier OsPIN1b Impairs Chilling and Drought Tolerance in Rice
by Chong Yang, Huihui Wang, Qiqi Ouyang, Guo Chen, Xiaoyu Fu, Dianyun Hou and Huawei Xu
Plants 2023, 12(23), 4058; https://doi.org/10.3390/plants12234058 - 2 Dec 2023
Cited by 2 | Viewed by 1663
Abstract
Significant progress has been made in the functions of auxin efflux transporter PIN-FORMED (PIN) genes for the regulation of growth and development in rice. However, knowledge on the roles of OsPIN genes in abiotic stresses is limited. We previously reported that [...] Read more.
Significant progress has been made in the functions of auxin efflux transporter PIN-FORMED (PIN) genes for the regulation of growth and development in rice. However, knowledge on the roles of OsPIN genes in abiotic stresses is limited. We previously reported that the mutation of OsPIN1b alters rice architecture and root gravitropism, while the role of OsPIN1b in the regulation of rice abiotic stress adaptations is still largely elusive. In the present study, two homozygous ospin1b mutants (C1b-1 and C1b-2) were employed to investigate the roles of OsPIN1b in regulating abiotic stress adaptations. Low temperature gradually suppressed OsPIN1b expression, while osmotic stress treatment firstly induced and then inhibited OsPIN1b expression. Most OsPIN genes and auxin biosynthesis key genes OsYUC were up-regulated in ospin1b leaves, implying that auxin homeostasis is probably disturbed in ospin1b mutants. The loss of function of OsPIN1b significantly decreased rice chilling tolerance, which was evidenced by decreased survival rate, increased death cells and ion leakage under chilling conditions. Compared with the wild-type (WT), ospin1b mutants accumulated more hydrogen peroxide (H2O2) and less superoxide anion radicals (O2) after chilling treatment, indicating that reactive oxygen species (ROS) homeostasis is disrupted in ospin1b mutants. Consistently, C-repeat binding factor (CBF)/dehydration-responsive element binding factor (DREB) genes were downregulated in ospin1b mutants, implying that OsDREB genes are implicated in OsPIN1b-mediated chilling impairment. Additionally, the mutation of OsPIN1b led to decreased sensitivity to abscisic acid (ABA) treatment in seed germination, impaired drought tolerance in the seedlings and changed expression of ABA-associated genes in rice roots. Taken together, our investigations revealed that OsPIN1b is implicated in chilling and drought tolerance in rice and provide new insight for improving abiotic stress tolerance in rice. Full article
(This article belongs to the Special Issue Role of Auxin in Plant Growth and Development)
Show Figures

Figure 1

16 pages, 2985 KiB  
Article
The Developmental Mechanism of the Root System of Cultivated Terrestrial Watercress
by Jiajun Ran, Qiang Ding, Guangpeng Wang, Yunlou Shen, Zhanyuan Gao, Yue Gao, Xiaoqing Ma and Xilin Hou
Plants 2023, 12(20), 3523; https://doi.org/10.3390/plants12203523 - 10 Oct 2023
Cited by 2 | Viewed by 1451
Abstract
A well-developed root system is crucial for the rapid growth, asexual reproduction, and adaptation to the drought environments of the watercress. After analyzing the transcriptome of the watercress root system, we found that a high concentration of auxin is key to its adaptation [...] Read more.
A well-developed root system is crucial for the rapid growth, asexual reproduction, and adaptation to the drought environments of the watercress. After analyzing the transcriptome of the watercress root system, we found that a high concentration of auxin is key to its adaptation to dry conditions. For the first time, we obtained DR5::EGFP watercress, which revealed the dynamic distribution of auxin in watercress root development under drought conditions. Via the application of naphthylphthalamic acid (NPA), 4-biphenylboronic acid (BBO), ethylene (ETH), abscisic acid (ABA), and other factors, we confirmed that auxin has a significant impact on the root development of watercress. Finally, we verified the role of auxin in root development using 35S::NoYUC8 watercress and showed that the synthesis of auxin in the root system mainly depends on the tryptophan, phenylalanine, and tyrosine amino acids (TAA) synthesis pathway. After the level of auxin increases, the root system of the watercress develops toward adaptation to dry environments. The formation of root aerenchyma disrupts the concentration gradient of auxin and is a key factor in the differentiation of lateral root primordia and H cells in watercress. Full article
(This article belongs to the Special Issue Role of Auxin in Plant Growth and Development)
Show Figures

Figure 1

15 pages, 2868 KiB  
Article
Auxin Transporter OsPIN1b, a Novel Regulator of Leaf Inclination in Rice (Oryza sativa L.)
by Yanjun Zhang, Shaqila Han, Yuqing Lin, Jiyue Qiao, Naren Han, Yanyan Li, Yaning Feng, Dongming Li and Yanhua Qi
Plants 2023, 12(2), 409; https://doi.org/10.3390/plants12020409 - 15 Jan 2023
Cited by 4 | Viewed by 2197
Abstract
Leaf inclination is one of the most important components of the ideal architecture, which effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b. [...] Read more.
Leaf inclination is one of the most important components of the ideal architecture, which effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b. Two CRISPR-Cas9 homozygous mutants, ospin1b-1 and ospin1b-2, with smaller leaf inclination compared to the wild-type, Nipponbare (WT/NIP), while overexpression lines, OE-OsPIN1b-1 and OE-OsPIN1b-2 have opposite phenotype. Further cell biological observation showed that in the adaxial region, OE-OsPIN1b-1 has significant bulge compared to WT/NIP and ospin1b-1, indicating that the increase in the adaxial cell division results in the enlarging of the leaf inclination in OE-OsPIN1b-1. The OsPIN1b was localized on the plasma membrane, and the free IAA contents in the lamina joint of ospin1b mutants were significantly increased while they were decreased in OE-OsPIN1b lines, suggesting that OsPIN1b might action an auxin transporter such as AtPIN1 to alter IAA content and leaf inclination. Furthermore, the OsPIN1b expression was induced by exogenous epibrassinolide (24-eBL) and IAA, and ospin1b mutants are insensitive to BR or IAA treatment, indicating that the effecting leaf inclination is regulated by OsPIN1b. This study contributes a new gene resource for molecular design breeding of rice architecture. Full article
(This article belongs to the Special Issue Role of Auxin in Plant Growth and Development)
Show Figures

Figure 1

Review

Jump to: Research

11 pages, 689 KiB  
Review
Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants
by Veronica C. Perez, Haohao Zhao, Makou Lin and Jeongim Kim
Plants 2023, 12(2), 266; https://doi.org/10.3390/plants12020266 - 6 Jan 2023
Cited by 8 | Viewed by 3936
Abstract
Auxins are a class of plant hormones playing crucial roles in a plant’s growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, [...] Read more.
Auxins are a class of plant hormones playing crucial roles in a plant’s growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis. Full article
(This article belongs to the Special Issue Role of Auxin in Plant Growth and Development)
Show Figures

Figure 1

Back to TopTop