sensors-logo

Journal Browser

Journal Browser

Mobile Sensor Computing: Theory and Applications

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Sensor Networks".

Deadline for manuscript submissions: closed (31 December 2015) | Viewed by 151710

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
School of Information, Kyoto University, Kyoto, Japan
Interests: graph theory in sensor networks, computer vision, pattern recognition, robotics

Special Issue Information

Dear Colleagues,

The development of new hardware and new technologies on wireless networks makes it practical for small devices with sensing abilities to be connected into sensor networks. Examples of such possibilities include wearable electronic devices, home monitoring, and smart cities. In the mobile environment, sensor networks are robust and the topology may vary with the moving node. Providing sensor computing is still a challenging issue, especially in heterogeneous or mobile environments.

This Special Issue aims to foster the latest development in sensor computing, from theory to its applications. Original contributions that provide novel theories, frameworks, and solutions to the challenging problems of mobile sensor networking, connection control, Quality-of-Service support, test platforms, and applications are solicited for this Special Issue.

Prof. Dr. Neal N. Xiong
Dr. Xuefeng Liang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Keywords

  • ubiquitous computing in mobile sensing
  • mobile sensing schemes
  • service-oriented mobile sensing
  • new architecture for mobile sensor networks
  • energy efficiency in mobile sensing
  • security issues in mobile sensor networks
  • authentication protocols
  • data storage, search, transformation, analysis, and visualization
  • intelligent and smart sensor networks

Published Papers (22 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

405 KiB  
Article
Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks
by Kehua Guo, Ping Zhang and Jianhua Ma
Sensors 2016, 16(4), 583; https://doi.org/10.3390/s16040583 - 23 Apr 2016
Cited by 4 | Viewed by 4901
Abstract
Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., [...] Read more.
Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

3512 KiB  
Article
A Hybrid Key Management Scheme for WSNs Based on PPBR and a Tree-Based Path Key Establishment Method
by Ying Zhang, Jixing Liang, Bingxin Zheng and Wei Chen
Sensors 2016, 16(4), 509; https://doi.org/10.3390/s16040509 - 09 Apr 2016
Cited by 13 | Viewed by 5461
Abstract
With the development of wireless sensor networks (WSNs), in most application scenarios traditional WSNs with static sink nodes will be gradually replaced by Mobile Sinks (MSs), and the corresponding application requires a secure communication environment. Current key management researches pay less attention to [...] Read more.
With the development of wireless sensor networks (WSNs), in most application scenarios traditional WSNs with static sink nodes will be gradually replaced by Mobile Sinks (MSs), and the corresponding application requires a secure communication environment. Current key management researches pay less attention to the security of sensor networks with MS. This paper proposes a hybrid key management schemes based on a Polynomial Pool-based key pre-distribution and Basic Random key pre-distribution (PPBR) to be used in WSNs with MS. The scheme takes full advantages of these two kinds of methods to improve the cracking difficulty of the key system. The storage effectiveness and the network resilience can be significantly enhanced as well. The tree-based path key establishment method is introduced to effectively solve the problem of communication link connectivity. Simulation clearly shows that the proposed scheme performs better in terms of network resilience, connectivity and storage effectiveness compared to other widely used schemes. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

3961 KiB  
Article
Tracking Mobile Sinks via Analysis of Movement Angle Changes in WSNs
by Guisong Yang, Huifen Xu, Xingyu He, Gang Wang, Naixue Xiong and Chunxue Wu
Sensors 2016, 16(4), 449; https://doi.org/10.3390/s16040449 - 29 Mar 2016
Cited by 14 | Viewed by 5138
Abstract
Existing methods for tracking mobile sinks in Wireless Sensor Networks (WSNs) often incur considerable energy consumption and overhead. To address this issue, we propose a Detour-Aware Mobile Sink Tracking (DAMST) method via analysis of movement angle changes of mobile sinks, for collecting data [...] Read more.
Existing methods for tracking mobile sinks in Wireless Sensor Networks (WSNs) often incur considerable energy consumption and overhead. To address this issue, we propose a Detour-Aware Mobile Sink Tracking (DAMST) method via analysis of movement angle changes of mobile sinks, for collecting data in a low-overhead and energy efficient way. In the proposed method, while a mobile sink passes through a region, it appoints a specific node as a region agent to collect information of the whole region, and records nodes near or on its trajectory as footprints. If it needs information from the region agent in a future time it will construct an energy efficient path from the region agent to itself by calculating its own movement angles according to the footprints, as well as getting rid of detours by analyzing these movement angles. Finally, the performance of the tracking method is evaluated systematically under different trajectory patterns and footprint appointment intervals. The simulation results consolidate that DAMST has advantages in reducing energy consumption and data overhead. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Graphical abstract

1181 KiB  
Article
Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks
by Thaier Hayajneh, Bassam J Mohd, Muhammad Imran, Ghada Almashaqbeh and Athanasios V. Vasilakos
Sensors 2016, 16(4), 424; https://doi.org/10.3390/s16040424 - 24 Mar 2016
Cited by 74 | Viewed by 10580
Abstract
There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data [...] Read more.
There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

684 KiB  
Article
Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility
by Mariam Akbar, Nadeem Javaid, Ayesha Hussain Khan, Muhammad Imran, Muhammad Shoaib and Athanasios Vasilakos
Sensors 2016, 16(3), 404; https://doi.org/10.3390/s16030404 - 19 Mar 2016
Cited by 63 | Viewed by 7876
Abstract
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and [...] Read more.
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

3688 KiB  
Article
A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks
by Aamir Shahzad, Malrey Lee, Neal Naixue Xiong, Gisung Jeong, Young-Keun Lee, Jae-Young Choi, Abdul Wheed Mahesar and Iftikhar Ahmad
Sensors 2016, 16(3), 322; https://doi.org/10.3390/s16030322 - 03 Mar 2016
Cited by 11 | Viewed by 10154
Abstract
In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of [...] Read more.
In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

2748 KiB  
Article
Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution
by Bo Yue, Shuang Wang, Xuefeng Liang, Licheng Jiao and Caijin Xu
Sensors 2016, 16(3), 288; https://doi.org/10.3390/s16030288 - 26 Feb 2016
Cited by 4 | Viewed by 4893
Abstract
The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often [...] Read more.
The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

2189 KiB  
Article
An Effective Collaborative Mobile Weighted Clustering Schemes for Energy Balancing in Wireless Sensor Networks
by Chengpei Tang, Sanesy Kumcr Shokla, George Modhawar and Qiang Wang
Sensors 2016, 16(2), 261; https://doi.org/10.3390/s16020261 - 19 Feb 2016
Cited by 5 | Viewed by 4827
Abstract
Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By [...] Read more.
Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

1597 KiB  
Article
Joint Transmit Antenna Selection and Power Allocation for ISDF Relaying Mobile-to-Mobile Sensor Networks
by Lingwei Xu, Hao Zhang and T. Aaron Gulliver
Sensors 2016, 16(2), 249; https://doi.org/10.3390/s16020249 - 19 Feb 2016
Cited by 5 | Viewed by 4588
Abstract
The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation [...] Read more.
The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

2064 KiB  
Article
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network
by Yuzhong Chen, Shining Weng, Wenzhong Guo and Naixue Xiong
Sensors 2016, 16(2), 245; https://doi.org/10.3390/s16020245 - 19 Feb 2016
Cited by 22 | Viewed by 6557
Abstract
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of [...] Read more.
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

1096 KiB  
Article
Classification between Failed Nodes and Left Nodes in Mobile Asset Tracking Systems †
by Kwangsoo Kim, Jae-Yeon Jin and Seong-il Jin
Sensors 2016, 16(2), 240; https://doi.org/10.3390/s16020240 - 18 Feb 2016
Cited by 3 | Viewed by 4757
Abstract
Medical asset tracking systems track a medical device with a mobile node and determine its status as either in or out, because it can leave a monitoring area. Due to a failed node, this system may decide that a mobile asset is outside [...] Read more.
Medical asset tracking systems track a medical device with a mobile node and determine its status as either in or out, because it can leave a monitoring area. Due to a failed node, this system may decide that a mobile asset is outside the area, even though it is within the area. In this paper, an efficient classification method is proposed to separate mobile nodes disconnected from a wireless sensor network between nodes with faults and a node that actually has left the monitoring region. The proposed scheme uses two trends extracted from the neighboring nodes of a disconnected mobile node. First is the trend in a series of the neighbor counts; the second is that of the ratios of the boundary nodes included in the neighbors. Based on such trends, the proposed method separates failed nodes from mobile nodes that are disconnected from a wireless sensor network without failures. The proposed method is evaluated using both real data generated from a medical asset tracking system and also using simulations with the network simulator (ns-2). The experimental results show that the proposed method correctly differentiates between failed nodes and nodes that are no longer in the monitoring region, including the cases that the conventional methods fail to detect. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

1924 KiB  
Article
Local Tiled Deep Networks for Recognition of Vehicle Make and Model
by Yongbin Gao and Hyo Jong Lee
Sensors 2016, 16(2), 226; https://doi.org/10.3390/s16020226 - 11 Feb 2016
Cited by 53 | Viewed by 8545
Abstract
Vehicle analysis involves license-plate recognition (LPR), vehicle-type classification (VTC), and vehicle make and model recognition (MMR). Among these tasks, MMR plays an important complementary role in respect to LPR. In this paper, we propose a novel framework for MMR using local tiled deep [...] Read more.
Vehicle analysis involves license-plate recognition (LPR), vehicle-type classification (VTC), and vehicle make and model recognition (MMR). Among these tasks, MMR plays an important complementary role in respect to LPR. In this paper, we propose a novel framework for MMR using local tiled deep networks. The frontal views of vehicle images are first extracted and fed into the local tiled deep networks for training and testing. A local tiled convolutional neural network (LTCNN) is proposed to alter the weight sharing scheme of CNN with local tiled structure. The LTCNN unties the weights of adjacent units and then ties the units k steps from each other within a local map. This architecture provides the translational, rotational, and scale invariance as well as locality. In addition, to further deal with the colour and illumination variation, we applied the histogram oriented gradient (HOG) to the frontal view of images prior to the LTCNN. The experimental results show that our LTCNN framework achieved a 98% accuracy rate in terms of vehicle MMR. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

2910 KiB  
Article
Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks
by Suleiman Zubair, Sharifah Kamilah Syed Yusoff and Norsheila Fisal
Sensors 2016, 16(2), 172; https://doi.org/10.3390/s16020172 - 29 Jan 2016
Cited by 8 | Viewed by 4738
Abstract
The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty [...] Read more.
The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Graphical abstract

3531 KiB  
Article
Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles
by Jiafu Wan, Jianqi Liu, Zehui Shao, Athanasios V. Vasilakos, Muhammad Imran and Keliang Zhou
Sensors 2016, 16(1), 88; https://doi.org/10.3390/s16010088 - 11 Jan 2016
Cited by 212 | Viewed by 16853
Abstract
The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation [...] Read more.
The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

2605 KiB  
Article
A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment
by Ying Gao, Chris Hadri Wkram, Jiajie Duan and Jarong Chou
Sensors 2015, 15(12), 31108-31124; https://doi.org/10.3390/s151229836 - 10 Dec 2015
Cited by 12 | Viewed by 5323
Abstract
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding [...] Read more.
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

7473 KiB  
Article
Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks
by Xiaohu Fan, Hao Huang, Shipeng Qi, Xincheng Luo, Jing Zeng, Qubo Xie and Changsheng Xie
Sensors 2015, 15(12), 30270-30292; https://doi.org/10.3390/s151229797 - 03 Dec 2015
Cited by 13 | Viewed by 10851
Abstract
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the [...] Read more.
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

637 KiB  
Article
Capacity Model and Constraints Analysis for Integrated Remote Wireless Sensor and Satellite Network in Emergency Scenarios
by Wei Zhang, Gengxin Zhang, Feihong Dong, Zhidong Xie and Dongming Bian
Sensors 2015, 15(11), 29036-29055; https://doi.org/10.3390/s151129036 - 17 Nov 2015
Cited by 8 | Viewed by 5202
Abstract
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed [...] Read more.
This article investigates the capacity problem of an integrated remote wireless sensor and satellite network (IWSSN) in emergency scenarios. We formulate a general model to evaluate the remote sensor and satellite network capacity. Compared to most existing works for ground networks, the proposed model is time varying and space oriented. To capture the characteristics of a practical network, we sift through major capacity-impacting constraints and analyze the influence of these constraints. Specifically, we combine the geometric satellite orbit model and satellite tool kit (STK) engineering software to quantify the trends of the capacity constraints. Our objective in analyzing these trends is to provide insights and design guidelines for optimizing the integrated remote wireless sensor and satellite network schedules. Simulation results validate the theoretical analysis of capacity trends and show the optimization opportunities of the IWSSN. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

11054 KiB  
Article
Optimizing the Reliability and Performance of Service Composition Applications with Fault Tolerance in Wireless Sensor Networks
by Zhao Wu, Naixue Xiong, Yannong Huang, Degang Xu and Chunyang Hu
Sensors 2015, 15(11), 28193-28223; https://doi.org/10.3390/s151128193 - 06 Nov 2015
Cited by 9 | Viewed by 5043
Abstract
The services composition technology provides flexible methods for building service composition applications (SCAs) in wireless sensor networks (WSNs). The high reliability and high performance of SCAs help services composition technology promote the practical application of WSNs. The optimization methods for reliability and performance [...] Read more.
The services composition technology provides flexible methods for building service composition applications (SCAs) in wireless sensor networks (WSNs). The high reliability and high performance of SCAs help services composition technology promote the practical application of WSNs. The optimization methods for reliability and performance used for traditional software systems are mostly based on the instantiations of software components, which are inapplicable and inefficient in the ever-changing SCAs in WSNs. In this paper, we consider the SCAs with fault tolerance in WSNs. Based on a Universal Generating Function (UGF) we propose a reliability and performance model of SCAs in WSNs, which generalizes a redundancy optimization problem to a multi-state system. Based on this model, an efficient optimization algorithm for reliability and performance of SCAs in WSNs is developed based on a Genetic Algorithm (GA) to find the optimal structure of SCAs with fault-tolerance in WSNs. In order to examine the feasibility of our algorithm, we have evaluated the performance. Furthermore, the interrelationships between the reliability, performance and cost are investigated. In addition, a distinct approach to determine the most suitable parameters in the suggested algorithm is proposed. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

1257 KiB  
Article
Time Reversal Acoustic Communication Using Filtered Multitone Modulation
by Lin Sun, Baowei Chen, Haisen Li, Tian Zhou and Ruo Li
Sensors 2015, 15(9), 23554-23571; https://doi.org/10.3390/s150923554 - 17 Sep 2015
Cited by 11 | Viewed by 4917
Abstract
The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR [...] Read more.
The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

786 KiB  
Article
A Self-Adaptive Behavior-Aware Recruitment Scheme for Participatory Sensing
by Yuanyuan Zeng and Deshi Li
Sensors 2015, 15(9), 23361-23375; https://doi.org/10.3390/s150923361 - 16 Sep 2015
Cited by 8 | Viewed by 4349
Abstract
Participatory sensing services utilizing the abundant social participants with sensor-enabled handheld smart device resources are gaining high interest nowadays. One of the challenges faced is the recruitment of participants by fully utilizing their daily activity behavior with self-adaptiveness toward the realistic application scenarios. [...] Read more.
Participatory sensing services utilizing the abundant social participants with sensor-enabled handheld smart device resources are gaining high interest nowadays. One of the challenges faced is the recruitment of participants by fully utilizing their daily activity behavior with self-adaptiveness toward the realistic application scenarios. In the paper, we propose a self-adaptive behavior-aware recruitment scheme for participatory sensing. People are assumed to join the sensing tasks along with their daily activity without pre-defined ground truth or any instructions. The scheme is proposed to model the tempo-spatial behavior and data quality rating to select participants for participatory sensing campaign. Based on this, the recruitment is formulated as a linear programming problem by considering tempo-spatial coverage, data quality, and budget. The scheme enables one to check and adjust the recruitment strategy adaptively according to application scenarios. The evaluations show that our scheme provides efficient sensing performance as stability, low-cost, tempo-spatial correlation and self-adaptiveness. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

730 KiB  
Article
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic
by Ning Li, José-Fernán Martínez and Vicente Hernández Díaz
Sensors 2015, 15(8), 19541-19559; https://doi.org/10.3390/s150819541 - 10 Aug 2015
Cited by 22 | Viewed by 5579
Abstract
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer [...] Read more.
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

Review

Jump to: Research

1845 KiB  
Review
Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis
by Adwan Alanazi and Khaled Elleithy
Sensors 2015, 15(9), 22209-22233; https://doi.org/10.3390/s150922209 - 02 Sep 2015
Cited by 56 | Viewed by 9366
Abstract
Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) [...] Read more.
Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol. Full article
(This article belongs to the Special Issue Mobile Sensor Computing: Theory and Applications)
Show Figures

Figure 1

Back to TopTop