sensors-logo

Journal Browser

Journal Browser

Selected Papers from the IEEE International Conference on Systems, Man, and Cyberne (IEEE SMC 2020)

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: closed (31 May 2021) | Viewed by 12350

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Energy Systems and Nuclear Science, Ontario Tech University, Oshawa, ON L1H 7K4, Canada
Interests: safety engineering; fault diagnosis and amp; amp; real-time simulation; resilient smart energy grids; micro energy grids planning, control, and protection; advanced plasma generation; application on fusion energy; advanced safety and control systems for nuclear power plants; risk-based energy conservation; smart green buildings
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2020) will be held in Metro Toronto Convention Centre (MTCC), Toronto, Ontario, Canada. SMC 2020 is the flagship conference of the IEEE Systems, Man, and Cybernetics Society. It provides an international forum for researchers and practitioners to report most recent innovations and developments, summarize state-of-the-art, and exchange ideas and advances in all aspects of systems science and engineering, human machine systems, and cybernetics. Advances in these fields have increasing importance in the creation of intelligent environments involving technologies interacting with humans to provide an enriching experience and thereby improve quality of life. Papers related to the conference theme are solicited, including theories, methodologies, and emerging applications. Contributions to theory and practice, including but not limited to the following technical areas, are invited: Systems Science and Engineering, Human-Machine Systems, Cybernetics. Both conference expanded papers and other independent submissions are welcome. Authors of selected high-quality papers from the conference will be invited to submit extended versions of their original papers (50% extensions of contents of the conference paper) and the independent submissions should be in the same research area.

Prof. Dr. Hossam A. Gabbar
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4953 KiB  
Article
Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks
by Huai-Mu Wang, Huei-Yung Lin and Chin-Chen Chang
Sensors 2021, 21(14), 4755; https://doi.org/10.3390/s21144755 - 12 Jul 2021
Cited by 12 | Viewed by 4052
Abstract
In this paper, we present a real-time object detection and depth estimation approach based on deep convolutional neural networks (CNNs). We improve object detection through the incorporation of transfer connection blocks (TCBs), in particular, to detect small objects in real time. For depth [...] Read more.
In this paper, we present a real-time object detection and depth estimation approach based on deep convolutional neural networks (CNNs). We improve object detection through the incorporation of transfer connection blocks (TCBs), in particular, to detect small objects in real time. For depth estimation, we introduce binocular vision to the monocular-based disparity estimation network, and the epipolar constraint is used to improve prediction accuracy. Finally, we integrate the two-dimensional (2D) location of the detected object with the depth information to achieve real-time detection and depth estimation. The results demonstrate that the proposed approach achieves better results compared to conventional methods. Full article
Show Figures

Figure 1

20 pages, 7082 KiB  
Article
3D MRI Reconstruction Based on 2D Generative Adversarial Network Super-Resolution
by Hongtao Zhang, Yuki Shinomiya and Shinichi Yoshida
Sensors 2021, 21(9), 2978; https://doi.org/10.3390/s21092978 - 23 Apr 2021
Cited by 21 | Viewed by 6926
Abstract
The diagnosis of brain pathologies usually involves imaging to analyze the condition of the brain. Magnetic resonance imaging (MRI) technology is widely used in brain disorder diagnosis. The image quality of MRI depends on the magnetostatic field strength and scanning time. Scanners with [...] Read more.
The diagnosis of brain pathologies usually involves imaging to analyze the condition of the brain. Magnetic resonance imaging (MRI) technology is widely used in brain disorder diagnosis. The image quality of MRI depends on the magnetostatic field strength and scanning time. Scanners with lower field strengths have the disadvantages of a low resolution and high imaging cost, and scanning takes a long time. The traditional super-resolution reconstruction method based on MRI generally states an optimization problem in terms of prior information. It solves the problem using an iterative approach with a large time cost. Many methods based on deep learning have emerged to replace traditional methods. MRI super-resolution technology based on deep learning can effectively improve MRI resolution through a three-dimensional convolutional neural network; however, the training costs are relatively high. In this paper, we propose the use of two-dimensional super-resolution technology for the super-resolution reconstruction of MRI images. In the first reconstruction, we choose a scale factor of 2 and simulate half the volume of MRI slices as input. We utilize a receiving field block enhanced super-resolution generative adversarial network (RFB-ESRGAN), which is superior to other super-resolution technologies in terms of texture and frequency information. We then rebuild the super-resolution reconstructed slices in the MRI. In the second reconstruction, the image after the first reconstruction is composed of only half of the slices, and there are still missing values. In our previous work, we adopted the traditional interpolation method, and there was still a gap in the visual effect of the reconstructed images. Therefore, we propose a noise-based super-resolution network (nESRGAN). The noise addition to the network can provide additional texture restoration possibilities. We use nESRGAN to further restore MRI resolution and high-frequency information. Finally, we achieve the 3D reconstruction of brain MRI images through two super-resolution reconstructions. Our proposed method is superior to 3D super-resolution technology based on deep learning in terms of perception range and image quality evaluation standards. Full article
Show Figures

Figure 1

Back to TopTop