Feature Papers in World Electric Vehicle Journal in 2022

A special issue of World Electric Vehicle Journal (ISSN 2032-6653).

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 12253

Special Issue Editors


grade E-Mail Website
Guest Editor
MOBI—Electromobility Research Centre, Department of Electrical Engineering and Energy Technology, Faculty of Engineering Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium
Interests: electric and hybrid vehicles (batteries, power converters, and energy management simulations); the environmental and economical comparison of vehicles with different drive trains and fuels (LCA and TCO)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, China
Interests: distributed power generation; PWM power convertors; photovoltaic power systems; power generation control

Special Issue Information

Dear Colleagues,

As Editor-in-Chief of the World Electric Vehicle Journal, I am pleased to announce this Special Issue, entitled "Feature Papers in World Electric Vehicle Journal in 2022". This Special Issue will be a collection of articles from Editorial Board Members and leading researchers discussing new knowledge or new cutting-edge developments covers all studies related to battery, hybrid, and fuel cell electric vehicles comprehensively. Potential topics include but are not limited to the following items:

  • Vehicle & Transportation Systems
  • Autonomous and Connected Vehicles
  • Infrastructure
  • Marketing & Promotion
  • Energy Supply & Storage Systems
  • Propulsion Systems & Components
  • Power Electronics Components
  • Wireless Power Transfer
  • Other Related Topics including Modelling, Simulation, Measuring Methods and Equipment.

Prof. Dr. Joeri Van Mierlo
Prof. Dr. William Cai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. World Electric Vehicle Journal is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3240 KiB  
Article
Dynamic Cooperation of Transportation and Power Distribution Networks via EV Fast Charging Stations
by Zihao Chen, Bing Han, Fei Xue, Shaofeng Lu and Lin Jiang
World Electr. Veh. J. 2023, 14(2), 38; https://doi.org/10.3390/wevj14020038 - 02 Feb 2023
Cited by 2 | Viewed by 1818
Abstract
With the development of electric vehicles, research on the cooperation of transportation networks (TNs) and power distribution networks (PDNs) has become important. Because of practicability, most cooperation research focuses on user equilibrium assignment based on the Wardrop I principle. There is less research [...] Read more.
With the development of electric vehicles, research on the cooperation of transportation networks (TNs) and power distribution networks (PDNs) has become important. Because of practicability, most cooperation research focuses on user equilibrium assignment based on the Wardrop I principle. There is less research focusing on network cooperation involving the system optimal assignment based on Wardrop II. This research paper constructs a cooperation between dynamic system optimal (DSO) and dynamic optimal power flow (DOPF) assignments with multi-objective optimization. Based on Wardrop II, this DSO model realizes multiple origin–destination pairs, multiple tasks, and multiple vehicle types. Electric vehicle and fast charging station models are designed as the connection between both networks. The optimal result gives three scenarios: TN prior, PDN prior, and a compromise of both. DSO minimized the total travel cost and DOPF minimized the total cost of power generation. Several path choices resulted from the scenarios. Whichever scenario is chosen, an electric vehicle is assigned dispersedly for a certain time period to reduce power loss. The optimal solution is also affected by the charging power in fast charging stations. This research can be applied to logistics transportation under traffic restrictions. It offers a dynamic optimization model for transportation and power operators. Full article
(This article belongs to the Special Issue Feature Papers in World Electric Vehicle Journal in 2022)
Show Figures

Figure 1

19 pages, 4507 KiB  
Article
The Role of Attitude, Travel-Related, and Socioeconomic Characteristics in Modal Shift to Shared Autonomous Vehicles with Ride Sharing
by Mahsa Aboutorabi Kashani, Mohammadhossein Abbasi, Amir Reza Mamdoohi and Grzegorz Sierpiński
World Electr. Veh. J. 2023, 14(1), 23; https://doi.org/10.3390/wevj14010023 - 14 Jan 2023
Cited by 5 | Viewed by 2449
Abstract
The integration of automation and shared mobility services would significantly affect transportation demand, especially mode choice. However, little is known about how attitudes, travel attributes, and demographic factors affect the modal shift to shared autonomous vehicles (SAVs). A stated preference survey was designed [...] Read more.
The integration of automation and shared mobility services would significantly affect transportation demand, especially mode choice. However, little is known about how attitudes, travel attributes, and demographic factors affect the modal shift to shared autonomous vehicles (SAVs). A stated preference survey was designed to determine the preferences of car and transit users in relation to a modal shift to SAVs. The binary logit models’ results revealed distinct behavior patterns and systematic heterogeneity among transit and private car users based on a representative sample of 607 individuals in 2021. The shifting behavior of both users is positively affected by attitudinal factors, including consumer innovativeness, perceived usefulness, sharing intention, and ecological awareness, while negatively affected by privacy concerns. In terms of travel-related attributes of SAVs, car users are eight times more sensitive to waiting times compared to transit users, who are three times more concerned with travel costs. Further, privacy concerns, the number of passengers sharing a trip, and the ratio of waiting time to travel time of SAVs were the major barriers to shifting the likelihood of car users’ behavior. In light of these findings, based on the likely effects of SAVs on shifting behavior, a number of practical implications are suggested for more effective policy making. Full article
(This article belongs to the Special Issue Feature Papers in World Electric Vehicle Journal in 2022)
Show Figures

Figure 1

21 pages, 11465 KiB  
Article
An Energy-Based Assessment of Expected Benefits for V2H Charging Systems through a Dedicated Dynamic Simulation and Optimization Tool
by Carlo Villante, Stefano Ranieri, Francesco Duronio, Angelo De Vita and Michele Anatone
World Electr. Veh. J. 2022, 13(6), 99; https://doi.org/10.3390/wevj13060099 - 06 Jun 2022
Cited by 4 | Viewed by 2183
Abstract
Electricity from renewable energy sources represents the most promising way to decarbonize energy systems. A grid connection of car Electricity Storage Systems (ESSs) represents an opportunity to tackle issues regarding electricity production non-programmability, only if sufficiently smart bi-directional Vehicle to Grid technologies (V2G) [...] Read more.
Electricity from renewable energy sources represents the most promising way to decarbonize energy systems. A grid connection of car Electricity Storage Systems (ESSs) represents an opportunity to tackle issues regarding electricity production non-programmability, only if sufficiently smart bi-directional Vehicle to Grid technologies (V2G) are widely implemented. Fully Bi-directional grid capabilities are still poor and must be increased, both physically and in terms of management and billing possibilities (in the so-called smart-grid paradigm). However, some V2G technologies may be already implemented in smaller individual contexts: so-called Vehicle to Home, V2H technologies. Starting from these considerations, within the frame of an Italian publicly funded research project, the authors categorized and described many possible application contexts and developed an open-source dynamic simulation (fully available under request for the scientific community) to identify most promising conditions. To this aim, they also synthetized and tested an effective energy optimization algorithm which will soon be implemented on a prototypal wireless V2H device, built by ENEA in cooperation with Cassino University, in Italy. The performances of the system were assessed evaluating electricity auto-consumption and home auto-feeding ratios. Simulations show that very relevant performances can be obtained, up to the values 69% for electricity auto-consumption and 82% of home auto-feeding. Full article
(This article belongs to the Special Issue Feature Papers in World Electric Vehicle Journal in 2022)
Show Figures

Figure 1

13 pages, 1519 KiB  
Article
An Exploring Human Resource Development in Small and Medium Enterprises in Response to Electric Vehicle Industry Development
by Chadatan Osatis and Chonticha Asavanirandorn
World Electr. Veh. J. 2022, 13(6), 98; https://doi.org/10.3390/wevj13060098 - 06 Jun 2022
Cited by 5 | Viewed by 3863
Abstract
Transitioning the automotive industry from internal combustion engines (ICE) to electric vehicles (EV) has arisen as a critical challenge for global countries in achieving human resource development, owing to the need of new labor skills and replacement of automation systems. By applying a [...] Read more.
Transitioning the automotive industry from internal combustion engines (ICE) to electric vehicles (EV) has arisen as a critical challenge for global countries in achieving human resource development, owing to the need of new labor skills and replacement of automation systems. By applying a case study of Thailand’s automotive industry in response to this challenge, we aimed to plot out the trajectory of changes involved in the industry’s workforce during its transition with a central focus on Small and Medium-sized Enterprises (SMEs), in order to make sound suggestions to the government on how to build an effective policy for industry growth. An exploratory research design was adopted for the investigation. Both primary and secondary sources were collected. Interviews with key stakeholders, including official agencies, organizations in the business sector, and academic institutions, were conducted in a semi-structured format to collect as primary data. Meanwhile, secondary data were gathered from reports and other scholarly contributions that are relevant. All of the data that were collected were subjected to qualitative methods of analysis, including content and theme analysis. We found that the advances in technology and associated skills have posed challenges to the SMEs for the workforce relocations in terms of occupational shifts and skill development, with engineering demand potentially growing 10% while low labor skills declined by nearly 70%. We emphasized that without effective policies for establishing EV roadmap and coordination practices between public and private stakeholders, this transition would have a detrimental effect on the workforce development of SMEs, which would ultimately have a harmful impact on the automotive industry and the economy. Full article
(This article belongs to the Special Issue Feature Papers in World Electric Vehicle Journal in 2022)
Show Figures

Figure 1

Back to TopTop