Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Ascertainment of Type 2 Diabetes and Biomarker Assessment
2.4. Covariate Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Diabetes Foundation. IDF Diabetes Atlas, 3rd ed.; International Diabetes Foundation: Brussels, Belgium, 2006. [Google Scholar]
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Foundation: Brussels, Belgium, 2017. [Google Scholar]
- Zimmet, P.; Alberti, K.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782. [Google Scholar] [CrossRef]
- Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2012, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint Who/Fao Expert Consultation; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- National Research Council. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. The Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Jannasch, F.; Kroger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Heidemann, C.; Hoffmann, K.; Spranger, J.; Klipstein-Grobusch, K.; Mohlig, M.; Pfeiffer, A.F.; Boeing, H. A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)--Potsdam Study cohort. Diabetologia 2005, 48, 1126–1134. [Google Scholar] [CrossRef]
- Schulze, M.B.; Hoffmann, K.; Manson, J.E.; Willett, W.C.; Meigs, J.B.; Weikert, C.; Heidemann, C.; Colditz, G.A.; Hu, F.B. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am. J. Clin. Nutr. 2005, 82, 675–684. [Google Scholar] [CrossRef] [Green Version]
- McNaughton, S.A.; Mishra, G.D.; Brunner, E.J. Dietary patterns, insulin resistance, and incidence of type 2 diabetes in the whitehall II study. Diabetes Care 2008, 31, 1343–1348. [Google Scholar] [CrossRef]
- Liese, A.D.; Weis, K.E.; Schulz, M.; Tooze, J.A. Food intake patterns associated with incident type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes Care 2009, 32, 263–268. [Google Scholar] [CrossRef]
- Imamura, F.; Lichtenstein, A.H.; Dallal, G.E.; Meigs, J.B.; Jacques, P.F. Generalizability of dietary patterns associated with incidence of type 2 diabetes mellitus. Am. J. Clin. Nutr. 2009, 90, 1075–1083. [Google Scholar] [CrossRef] [Green Version]
- Sluijs, I.; Beulens, J.W.; van der, A.D.; Spijkerman, A.M.; Schulze, M.B.; van der Schouw, Y.T. Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. Am. J. Clin. Nutr. 2013, 143, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.K.; Jannasch, F.; Kroger, J.; Bedu-Addo, G.; Mockenhaupt, F.P.; Schulze, M.B.; Danquah, I. A Dietary Pattern Derived by Reduced Rank Regression is Associated with Type 2 Diabetes in An Urban Ghanaian Population. Nutrients 2015, 7, 5497–5514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGeoghegan, L.; Muirhead, C.R.; Almoosawi, S. Association between an anti-inflammatory and anti-oxidant dietary pattern and diabetes in British adults: Results from the national diet and nutrition survey rolling programme years 1–4. Int. J. Food Sci. Nutr. 2015, 67, 553–561. [Google Scholar] [CrossRef]
- Batis, C.; Mendez, M.A.; Gordon-Larsen, P.; Sotres-Alvarez, D.; Adair, L.; Popkin, B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr. 2016, 19, 195–203. [Google Scholar] [CrossRef]
- Jacobs, S.; Kroeger, J.; Schulze, M.B.; Frank, L.K.; Franke, A.A.; Cheng, I.; Monroe, K.R.; Haiman, C.A.; Kolonel, L.N.; Wilkens, L.R.; et al. Dietary Patterns Derived by Reduced Rank Regression Are Inversely Associated with Type 2 Diabetes Risk across 5 Ethnic Groups in the Multiethnic Cohort. Curr. Dev. Nutr. 2017, 1, e000620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reaven, G.M. Role of Insulin Resistance in Human Disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Reaven, G.M. Pathophysiology of insulin resistance in human disease. Physiol. Rev. 1995, 75, 473–486. [Google Scholar] [CrossRef]
- Antuna-Puente, B.; Disse, E.; Rabasa-Lhoret, R.; Laville, M.; Capeau, J.; Bastard, J.-P. How can we measure insulin sensitivity/resistance? Diabetes Metab. 2011, 37, 179–188. [Google Scholar] [CrossRef]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef]
- Li, C.; Ford, E.S.; Meng, Y.-X.; Mokdad, A.H.; Reaven, G.M. Does the association of the triglyceride to high-density lipoprotein cholesterol ratio with fasting serum insulin differ by race/ethnicity? Cardiovasc. Diabetol. 2008, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, M.R.; Carbajal, H.A.; Espeche, W.G.; Leiva Sisnieguez, C.E.; Balbín, E.; Dulbecco, C.A.; Aizpurúa, M.; Marillet, A.G.; Reaven, G.M. Relation Among the Plasma Triglyceride/High-Density Lipoprotein Cholesterol Concentration Ratio, Insulin Resistance, and Associated Cardio-Metabolic Risk Factors in Men and Women. Am. J. Cardiol. 2012, 109, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Vega, G.L.; Barlow, C.E.; Grundy, S.M.; Leonard, D.; DeFina, L.F. Triglyceride–to–high-density-lipoprotein-cholesterol ratio is an index of heart disease mortality and of incidence of type 2 diabetes mellitus in men. J. Investig. Med. 2014, 62, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-T.; Yoon, J.-H.; Kim, J.-Y.; Ahn, S.-K.; Linton, J.; Koh, S.-B.; Kim, J.-K. The association between the ratio of triglyceride to HDL-C and insulin resistance according to waist circumference in a rural Korean population. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Kang, H.-T.; Shim, J.-Y.; Lee, H.-R. The association between the triglyceride to high-density lipoprotein cholesterol ratio with insulin resistance (HOMA-IR) in the general Korean population: Based on the National Health and Nutrition Examination Survey in 2007–2009. Diabetes Res. Clin. Pract. 2012, 97, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.-C.; Park, H.-Y.; Kim, M.-J.; Reaven, G. Metabolic markers associated with insulin resistance predict type 2 diabetes in Koreans with normal blood pressure or prehypertension. Cardiovasc. Diabetol. 2016, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex differences in lipid and lipoprotein metabolism: It’s not just about sex hormones. J. Clin. Endocrinol. Metab. 2011, 96, 885–893. [Google Scholar] [CrossRef]
- Arganini, C.; Saba, A.; Comitato, R.; Virgili, F.; Turrini, A. Gender differences in food choice and dietary intake in modern western societies. In Public Health-Social and Behavioral Health; InTech Open Access Publisher: Rijeka, Croatia, 2012. [Google Scholar]
- Kim, Y.; Han, B.-G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- KCDC Center for Genome Sciences. FFQ guideline for Korean Genome and Epidemiology Study (KoGES). 2014. Available online: http://www.cdc.go.kr/NIH_NEW/contents/NihKrContentView.jsp?cid=141857&menuIds=HOME005-MNU2016-MNU1010-MNU1023#menu2_2_2 (accessed on 20 October 2018).
- Ahn, Y.; Kwon, E.; Shim, J.; Park, M.; Joo, Y.; Kimm, K.; Park, C.; Kim, D. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435. [Google Scholar] [CrossRef]
- Korean Nutrition Society. Recommended Dietary Allowances for Koreans, 7th ed.; Korean Nutrition Society: Seoul, Korea, 2000. [Google Scholar]
- American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care 2015, 38, S8–S16. [Google Scholar] [CrossRef]
- Korea Centers for Disease Control and Prevention. The Second Korea National Health and Nutrition Examination Survey (KNHANES II), 2001; Korea Centers for Disease Control and Prevention: Seoul, Korea, 2002. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; Nothlings, U.; Boeing, H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Hu, F.B.; Schulze, M.; Pollak, M.; Wu, T.; Fuchs, C.S.; Giovannucci, E. A dietary pattern that is associated with C-peptide and risk of colorectal cancer in women. Cancer Causes Control 2012, 23, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Lillioja, S.; Mott, D.M.; Spraul, M.; Ferraro, R.; Foley, J.E.; Ravussin, E.; Knowler, W.C.; Bennett, P.H.; Bogardus, C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus: Prospective studies of Pima Indians. N. Engl. J. Med. 1993, 329, 1988–1992. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium. Adherence to predefined dietary patterns and incident type 2 diabetes in European populations: EPIC-InterAct Study. Diabetologia 2014, 57, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Dobiásová, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clin. Biochem. 2001, 34, 583–588. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, J.; Liu, Y.; Sun, X.; Luo, X.; Han, C.; Zhang, L.; Wang, B.; Ren, Y.; Zhao, Y. Risk of type 2 diabetes mellitus associated with plasma lipid levels: The rural Chinese cohort study. Diabetes Res. Clin. Pract. 2018, 135, 150–157. [Google Scholar] [CrossRef]
- He, S.; Wang, S.; Chen, X.; Jiang, L.; Peng, Y.; Li, L.; Wan, L.; Cui, K. Higher ratio of triglyceride to high-density lipoprotein cholesterol may predispose to diabetes mellitus: 15-year prospective study in a general population. Metabolism 2012, 61, 30–36. [Google Scholar] [CrossRef]
- Hadaegh, F.; Khalili, D.; Ghasemi, A.; Tohidi, M.; Sheikholeslami, F.; Azizi, F. Triglyceride/HDL-cholesterol ratio is an independent predictor for coronary heart disease in a population of Iranian men. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 401–408. [Google Scholar] [CrossRef]
- Bittner, V.; Johnson, B.D.; Zineh, I.; Rogers, W.J.; Vido, D.; Marroquin, O.C.; Bairey-Merz, C.N.; Sopko, G. The triglyceride/high-density lipoprotein cholesterol ratio predicts all-cause mortality in women with suspected myocardial ischemia: A report from the Women’s Ischemia Syndrome Evaluation (WISE). Am. Heart J. 2009, 157, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Asia Pacific Cohort Studies Collaboration. A Comparison of Lipid Variables as Predictors of Cardiovascular Disease in the Asia Pacific Region. Ann. Epidemiol. 2005, 15, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Wang, W.; Fung, T.T.; Hu, F.B.; Smith-Warner, S.A.; Chavarro, J.E.; Fuchs, C.S.; Willett, W.C.; Giovannucci, E.L. Development and validation of empirical indices to assess the insulinaemic potential of diet and lifestyle. Br. J. Nutr. 2016, 116, 1787–1798. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1088–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, X.; Dong, J.; Wu, Z.; Li, W.; Qin, L. Dairy consumption and risk of type 2 diabetes mellitus: A meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011, 65, 1027. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Kim, S.; Lee, J.E. Sex consideration in diet–biomarker-related indices: A systematic review. Public Health Nutr. 2018, 1–13. [Google Scholar] [CrossRef]
Spearman’s Correlation with Dietary Pattern Scores | Quintile of TG/HDL-C Ratio-Related Dietary Pattern Scores | ||||
---|---|---|---|---|---|
Dietary Pattern Scores | TG/HDL-C Ratio | Quintile1 | Quintile3 | Quintile5 | |
Men (n = 2410) | |||||
Diet pattern scores | 1.00 | 0.15 a | |||
Positive associations | Mean ± SD | ||||
Noodles | 0.37 a | 0.07 a | 63.24 ± 54.12 | 68.18 ± 47.97 | 152.57 ± 120.93 |
Fruits | 0.33 a | 0.03 | 156.68 ± 150.35 | 154.63 ± 145.63 | 426.23 ± 382.61 |
Fermented salted seafood | 0.23 a | 0.03 | 1.26 ± 2.66 | 0.88 ± 1.58 | 4.91 ± 8.12 |
Inverse associations | |||||
Candy and chocolate | −0.30 a | −0.06 a | 5.02 ± 8.62 | 0.68 ± 1.42 | 0.69 ± 1.90 |
Nuts | −0.29 a | −0.06 a | 2.46 ± 4.40 | 0.39 ± 1.02 | 0.36 ± 1.08 |
Pork | −0.26 a | −0.03 | 69.70 ± 55.90 | 32.44 ± 29.14 | 37.11 ± 34.88 |
Women (n = 2687) | |||||
Diet pattern scores | 1.00 | 0.13 a | |||
Positive associations | Mean ± SD | ||||
Organ and other meats | 0.10 a | −0.01 | 0.94 ± 3.11 | 0.97 ± 2.44 | 3.62 ± 16.72 |
Inverse associations | |||||
Dairy products | −0.88 a | −0.12 a | 292.40 ± 173.30 | 75.75 ± 40.48 | 9.51 ± 32.10 |
Nuts | −0.42 a | −0.09 a | 2.50 ± 5.02 | 0.33 ± 0.57 | 0.04 ± 0.17 |
Quintile of TG/HDL-C Ratio-Related Dietary Pattern Scores | |||
---|---|---|---|
Quintile1 | Quintile3 | Quintile5 | |
Men (n = 2410) | 482 | 482 | 482 |
Age (years), mean ± SD | 50.38 ± 8.08 | 50.50 ± 7.99 | 51.10 ± 8.19 |
Residential area, n (%) | |||
Rural (Ansung) | 148 (30.71) | 209 (43.36) | 260 (53.94) |
Urban (Ansan) | 334 (69.29) | 273 (56.64) | 222 (46.06) |
Energy intake (kcal/day), mean ± SD | 2095.97 ± 527.68 | 1802.31 ± 437.21 | 2289.32 ± 603.02 |
BMI (kg/m2), mean ± SD a | 24.02 ± 2.88 | 24.27 ± 2.77 | 24.37 ± 2.90 |
Physical activity (METs h/week), mean ± SD | 9.65 ± 14.83 | 8.06 ± 12.29 | 8.76 ± 12.05 |
Smoking status, n (%) a | |||
Non-smoker | 116 (24.07) | 97 (20.12) | 99 (20.54) |
Past smoker | 175 (36.31) | 165 (34.23) | 130 (26.97) |
Current smoker | 191 (39.63) | 220 (45.64) | 253 (52.49) |
Alcohol consumption status, n (%) | |||
Non-drinker | 94 (19.50) | 101 (20.95) | 80 (16.60) |
Past drinker | 48 (9.96) | 32 (6.64) | 51 (10.58) |
Current drinker | 340 (70.54) | 349 (72.41) | 351 (72.82) |
Family history of diabetes, n (%) | |||
No | 434 (90.04) | 433 (89.83) | 437 (90.66) |
Yes | 48 (9.96) | 49 (10.17) | 45 (9.34) |
TG/HDL-C ratio, mean ± SD | 3.66 ± 2.79 | 4.14 ± 2.95 | 4.97 ± 4.06 |
TG (mg/dL), mean ± SD | 150.52 ± 92.96 | 166.22 ± 92.86 | 191.56 ± 123.95 |
HDL-C (mg/dL), mean ± SD | 44.88 ± 9.96 | 43.69 ± 9.27 | 42.73 ± 10.10 |
Women (n = 2687) | 538 | 531 | 512 |
Age (years), mean ± SD | 50.02 ± 8.06 | 50.24 ± 8.26 | 54.41 ± 8.97 |
Menopausal status, n (%) a | |||
Pre-menopause | 243 (52.83) | 263 (55.96) | 165 (35.71) |
Post-menopause | 217 (47.17) | 207 (44.04) | 297 (64.29) |
Residential area, n (%) | |||
Rural (Ansung) | 199 (36.99) | 236 (44.44) | 358 (69.92) |
Urban (Ansan) | 339 (63.01) | 295 (55.56) | 154 (30.08) |
Energy intake (kcal/day), mean ± SD | 2081.36 ± 513.71 | 1818.15 ± 480.73 | 1679.94 ± 517.76 |
BMI (kg/m2), mean ± SD a | 24.21 ± 2.97 | 24.72 ± 2.97 | 25.13 ± 3.23 |
Physical activity (METs h/week), mean ± SD | 11.72 ± 16.47 | 9.46 ± 14.56 | 6.69 ± 10.16 |
Smoking status, n (%) a | |||
Non-smoker | 510 (96.05) | 511 (96.78) | 481 (95.06) |
Past smoker | 4 (0.75) | 5 (0.95) | 10 (1.98) |
Current smoker | 17 (3.20) | 12 (2.27) | 15 (2.96) |
Alcohol consumption status, n (%) | |||
Non-drinker | 368 (68.40) | 378 (71.19) | 371 (72.46) |
Past drinker | 10 (1.86) | 14 (2.64) | 18 (3.52) |
Current drinker | 160 (29.74) | 139 (26.18) | 123 (24.02) |
Family history of diabetes, n (%) | |||
No | 467 (86.80) | 469 (88.32) | 461 (90.04) |
Yes | 71 (13.20) | 62 (11.68) | 51 (9.96) |
TG/HDL-C ratio, mean ± SD | 3.08 ± 2.24 | 3.27 ± 2.64 | 3.74 ± 2.59 |
TG (mg/dL), mean ± SD | 133.63 ± 74.45 | 136.19 ± 81.17 | 153.49 ± 82.92 |
HDL-C (mg/dL), mean ± SD | 47.72 ± 10.1 | 45.59 ± 9.76 | 45.11 ± 9.95 |
Quintiles of TG/HDL-C Ratio-Related Dietary Pattern Scores | ||||||
---|---|---|---|---|---|---|
Quintile1 | Quintile2 | Quintile3 | Quintile4 | Quintile5 | p for Trend | |
Men (n = 2410) | ||||||
Case/non-case | 99/383 | 110/372 | 106/376 | 112/370 | 133/349 | |
Unadjusted model | Reference | 1.14 (0.84–1.56) | 1.09 (0.80–1.49) | 1.17 (0.86–1.59) | 1.47 (1.10–1.99) | 0.010 |
Age-adjusted model | Reference | 1.15 (0.85–1.57) | 1.09 (0.80–1.48) | 1.17 (0.86–1.60) | 1.46 (1.08–1.97) | 0.013 |
Multivariate adjusted model1 a | Reference | 1.17 (0.85–1.61) | 1.12 (0.81–1.54) | 1.19 (0.87–1.63) | 1.53 (1.12–2.09) | 0.008 |
Multivariate adjusted model2 b | Reference | 1.16 (0.84–1.59) | 1.08 (0.78–1.49) | 1.12 (0.82–1.53) | 1.48 (1.09–2.03) | 0.019 |
Women (n = 2687) | ||||||
Case/non-case | 89/449 | 76/461 | 118/413 | 114/455 | 112/400 | |
Unadjusted model | Reference | 0.83 (0.60–1.16) | 1.44 (1.06–1.96) | 1.26 (0.93–1.72) | 1.41 (1.04–1.92) | 0.002 |
Age-adjusted model | Reference | 0.83 (0.59–1.15) | 1.44 (1.06–1.95) | 1.20 (0.88–1.64) | 1.27 (0.93–1.74) | 0.014 |
Multivariate adjusted model1 c | Reference | 0.83 (0.59–1.16) | 1.45 (1.06–1.99) | 1.23 (0.88–1.71) | 1.33 (0.95–1.86) | 0.011 |
Multivariate adjusted model2 b | Reference | 0.80 (0.57–1.13) | 1.37 (1.00–1.89) | 1.14 (0.81–1.59) | 1.21 (0.86–1.70) | 0.053 |
Quintiles of TG/HDL-C Ratio-Related Dietary Pattern Scores | |||||||
---|---|---|---|---|---|---|---|
Quintile1 | Quintile2 | Quintile3 | Quintile4 | Quintile5 | p for Trend | p for Interaction | |
Men a | |||||||
≤48 years, median (n = 1229) | Reference | 1.26 (0.80–1.98) | 1.02 (0.63–1.64) | 1.12 (0.71–1.77) | 1.65 (1.05–2.61) | 0.052 | 0.788 |
>48 years (n = 1181) | Reference | 1.09 (0.70–1.70) | 1.21 (0.79–1.88) | 1.26 (0.82–1.94) | 1.46 (0.96–2.23) | 0.063 | |
Women b | |||||||
≤49 years, median (n = 1376) | Reference | 0.73 (0.45–1.18) | 1.20 (0.76–1.90) | 1.02 (0.63–1.66) | 1.10 (0.65–1.86) | 0.407 | 0.319 |
>49 years (n = 1311) | Reference | 0.90 (0.55–1.46) | 1.75 (1.12–2.73) | 1.49 (0.94–2.38) | 1.61 (1.03–2.54) | 0.004 | |
Menopausal-status at baseline c | |||||||
Pre-menopause (n = 1143) | Reference | 0.83 (0.49–1.41) | 1.47 (0.90–2.41) | 1.17 (0.68–2.01) | 1.15 (0.64–2.07) | 0.236 | 0.324 |
Post-menopause (n = 1218) | Reference | 0.84 (0.50–1.41) | 1.57 (0.97–2.55) | 1.43 (0.87–2.33) | 1.55 (0.96–2.50) | 0.013 | |
Men a | |||||||
<25 kg/m2 (n = 1441) | Reference | 1.20 (0.78–1.85) | 1.21 (0.78–1.89) | 1.20 (0.76–1.89) | 1.82 (1.19–2.80) | 0.007 | 0.238 |
≥25 kg/m2 (n = 968) | Reference | 1.12 (0.69–1.80) | 0.92 (0.57–1.50) | 0.98 (0.63–1.53) | 1.17 (0.74–1.85) | 0.593 | |
Women b | |||||||
<25 kg/m2 (n = 1543) | Reference | 0.63 (0.38–1.05) | 1.53 (0.98–2.39) | 1.04 (0.64–1.69) | 1.17 (0.71–1.93) | 0.138 | 0.625 |
≥25 kg/m2 (n = 1144) | Reference | 1.00 (0.62–1.61) | 1.31 (0.83–2.07) | 1.31 (0.82–2.08) | 1.29 (0.81–2.05) | 0.133 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Lee, J.E. Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women. Nutrients 2019, 11, 8. https://doi.org/10.3390/nu11010008
Song S, Lee JE. Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women. Nutrients. 2019; 11(1):8. https://doi.org/10.3390/nu11010008
Chicago/Turabian StyleSong, Sihan, and Jung Eun Lee. 2019. "Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women" Nutrients 11, no. 1: 8. https://doi.org/10.3390/nu11010008
APA StyleSong, S., & Lee, J. E. (2019). Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women. Nutrients, 11(1), 8. https://doi.org/10.3390/nu11010008