Unraveling the Influential Mechanisms of Smart Interactions on Stickiness Intention: A Privacy Calculus Perspective
Abstract
:1. Introduction
2. Theoretical Background
2.1. Artificial Intelligent In-Home Voice Assistant (AVA)
2.2. Smart Interactions in the AIoT Context
2.3. Computers as Social Actors (CASA)
2.4. Privacy Calculus Theory
2.5. The Personalization–Privacy Paradox (PPP) Framework
3. Research Framework and Hypotheses
3.1. The Effects of Smart Interactions on Utilitarian Benefit
3.1.1. The Effects of AI–Human Interaction on Utilitarian Benefit
3.1.2. The Effect of AI–Content Interaction on Utilitarian Benefit
3.1.3. The Effect of AI–Machine Interaction on Utilitarian Benefit
3.1.4. The Effect of Human–Human Interaction on Utilitarian Benefit
3.2. The Effects of Smart Interactions on Hedonic Benefit
3.2.1. The Effects of AI–Human Interaction on Hedonic Benefit
3.2.2. The Effect of AI–Content Interaction on Hedonic Benefit
3.2.3. The Effect of AI–Machine Interaction on Hedonic Benefit
3.2.4. The Effect of Human–Human Interaction on Hedonic Benefit
3.3. The Effects of Smart Interactions on Privacy Risk
3.4. The Effects of Privacy Calculus
3.5. The Moderating Effect of Susceptibility to Normative Influence
4. Research Method
4.1. Measurement Scales
4.2. Sample and Data Collection
5. Data Analysis and Results
5.1. Common-Method Variance Bias Test (CMV)
5.2. Measurement Model Analysis
5.3. Structural Model Analysis
5.4. The Moderating Roles of Susceptibility to Normative Influence
6. Discussion and Conclusions
6.1. Major Findings
6.2. Theoretical Implications
6.3. Managerial Implications
6.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavado-Nalvaiz, N.; Lucia-Palacios, L.; Pérez-López, R. The role of the humanisation of smart home speakers in the personalisation–privacy paradox. Electron. Commer. Res. Appl. 2022, 53, 101146. [Google Scholar] [CrossRef]
- Wang, C.L. Editorial–what is an interactive marketing perspective and what are emerging research areas? J. Res. Interact. Mark. 2024, 18, 161–165. [Google Scholar] [CrossRef]
- Zimmermann, R.; Mora, D.; Cirqueira, D.; Helfert, M.; Bezbradica, M.; Werth, D.; Weitzl, W.J.; Riedl, R.; Auinger, A. Enhancing brick-and-mortar store shopping experience with an augmented reality shopping assistant application using personalized recommendations and explainable artificial intelligence. J. Res. Interact. Mark. 2023, 17, 273–298. [Google Scholar] [CrossRef]
- Cao, G.; Wang, P. Revealing or concealing: Privacy information disclosure in intelligent voice assistant usage- a configurational approach. Ind. Manag. Data Syst. 2022, 122, 1215–1245. [Google Scholar] [CrossRef]
- Poushneh, A. Humanizing voice assistant: The impact of voice assistant personality on consumers’ attitudes and behaviors. J. Retail. Consum. Serv. 2021, 58, 102283. [Google Scholar] [CrossRef]
- Vimalkumar, M.; Sharma, S.K.; Singh, J.B.; Dwivedi, Y.K. ‘Okay google, what about my privacy?’: User’s privacy perceptions and acceptance of voice based digital assistants. Comput. Hum. Behav. 2021, 120, 106763. [Google Scholar] [CrossRef]
- Xue, J.; Niu, Y.; Liang, X.; Yin, S. Unraveling the effects of voice assistant interactions on digital engagement: The moderating role of adult playfulness. Int. J. Hum. Comput. Interact. 2024, 40, 4934–4955. [Google Scholar] [CrossRef]
- Jain, S.; Basu, S.; Dwivedi, Y.K.; Kaur, S. Interactive voice assistants-does brand credibility assuage privacy risks? J. Bus. Res. 2022, 139, 701–717. [Google Scholar] [CrossRef]
- Mishra, A.; Shukla, A.; Sharma, S.K. Psychological determinants of users’ adoption and word-of-mouth recommendations of smart voice assistants. Int. J. Inf. Manag. 2021, 67, 102413. [Google Scholar] [CrossRef]
- Aw, E.C.-X.; Tan, G.W.-H.; Cham, T.-H.; Raman, R.; Ooi, K.-B. Alexa, what’s on my shopping list? Transforming customer experience with digital voice assistants. Technol. Forecast. Soc. Change 2022, 180, 121711. [Google Scholar] [CrossRef]
- Jeong, M.; Shin, H.H. Tourists’ experiences with smart tourism technology at smart destinations and their behavior intentions. J. Travel Res. 2019, 59, 1464–1477. [Google Scholar] [CrossRef]
- Sutanto, J.; Palme, E.; Tan, C.H.; Phang, C.W. Addressing the personalization–privacy paradox: An empirical assessment from a field experiment on smartphone users. Mis. Q. 2013, 37, 1141–1164. [Google Scholar] [CrossRef]
- Xu, H.; Luo, X.R.; Carroll, J.M.; Rosson, M.B. The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing. Decis. Support Syst. 2011, 51, 42–52. [Google Scholar] [CrossRef]
- Hayes, J.L.; Brinson, N.H.; Bott, G.J.; Moeller, C.M. The influence of consumer–brand relationship on the personalized advertising privacy calculus in social media. J. Interact. Mark. 2021, 55, 16–30. [Google Scholar] [CrossRef]
- Buteau, E.; Lee, J. Hey alexa, why do we use voice assistants? The driving factors of voice assistant technology use. Commun. Res. Rep. 2021, 38, 336–345. [Google Scholar] [CrossRef]
- Fernandes, T.; Oliveira, E. Understanding consumers’ acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption. J. Bus. Res. 2021, 122, 180–191. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K.; Barhorst, J. Alexa, do voice assistants influence consumer brand engagement?-examining the role of ai powered voice assistants in influencing consumer brand engagement. J. Bus. Res. 2021, 124, 312–328. [Google Scholar] [CrossRef]
- Uysal, E.; Alavi, S.; Bezençon, V. Trojan horse or useful helper? A relationship perspective on artificial intelligence assistants with humanlike features. J. Acad. Mark. Sci. 2022, 50, 1153–1175. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K. Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistants. Comput. Hum. Behav. 2019, 99, 28–37. [Google Scholar] [CrossRef]
- Canziani, B.; MacSween, S. Consumer acceptance of voice-activated smart home devices for product information seeking and online ordering. Comput. Hum. Behav. 2021, 119, 106714. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H. Artificial intelligence-enabled personalization in interactive marketing: A customer journey perspective. J. Res. Interact. Mark. 2023, 17, 663–680. [Google Scholar] [CrossRef]
- Li, X.; Sung, Y. Anthropomorphism brings us closer: The mediating role of psychological distance in user–ai assistant interactions. Comput. Hum. Behav. 2021, 118, 106680. [Google Scholar] [CrossRef]
- Lopez, A.; Garza, R. Consumer bias against evaluations received by artificial intelligence: The mediation effect of lack of transparency anxiety. J. Res. Interact. Mark. 2023, 17, 831–847. [Google Scholar] [CrossRef]
- Huh, J.; Kim, H.-Y.; Lee, G. “Oh, happy day!” examining the role of ai-powered voice assistants as a positive technology in the formation of brand loyalty. J. Res. Interact. Mark. 2023, 17, 794–812. [Google Scholar] [CrossRef]
- Yim, A.; Cui, A.P.; Walsh, M. The role of cuteness on consumer attachment to artificial intelligence agents. J. Res. Interact. Mark. 2024, 18, 127–141. [Google Scholar] [CrossRef]
- Yam, K.C.; Bigman, Y.E.; Tang, P.M.; Ilies, R.; Cremer, D.D.; Soh, H. Robots at work: People prefer—and forgive—service robots with perceived feelings. J. Appl. Psychol. 2020, 106, 1557–1572. [Google Scholar] [CrossRef]
- Jin, E.; Eastin, M.S. Birds of a feather flock together: Matched personality effects of product recommendation chatbots and users. J. Res. Interact. Mark. 2023, 17, 416–433. [Google Scholar] [CrossRef]
- Chen, Y.H.; Keng, C.-J.; Chen, Y.-L. How interaction experience enhances customer engagement in smart speaker devices? The moderation of gendered voice and product smartness. J. Res. Interact. Mark. 2022, 16, 403–419. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, Y.; Gupta, S.; Wang, J.; Hu, P. Promoting smart wearable devices in the health-ai market: The role of health consciousness and privacy protection. J. Res. Interact. Mark. 2023, 17, 257–272. [Google Scholar] [CrossRef]
- Lin, M.Y.-C.; Do, B.-R.; Nguyen, T.T.; Cheng, J.M.-S. Effects of personal innovativeness and perceived value of disclosure on privacy concerns in proximity marketing: Self-control as a moderator. J. Res. Interact. Mark. 2022, 16, 310–327. [Google Scholar] [CrossRef]
- Huang, M.-H.; Rust, R.T. Engaged to a robot? The role of ai in service. J. Serv. Res. 2020, 24, 30–41. [Google Scholar] [CrossRef]
- Mcmillan, S.J.; Hwang, J.S. Measures of perceived interactivity: An exploration of the role of direction of communication, user control, and time in shaping perceptions of interactivity. J. Advert. 2002, 31, 29–42. [Google Scholar] [CrossRef]
- Shi, X.; Evans, R.; Shan, W. Solver engagement in online crowdsourcing communities: The roles of perceived interactivity, relationship quality and psychological ownership. Technol. Forecast. Soc. Change 2022, 175, 121389. [Google Scholar] [CrossRef]
- Park, M.; Yoo, J. Effects of perceived interactivity of augmented reality on consumer responses: A mental imagery perspective. J. Retail. Consum. Serv. 2020, 52, 101912. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Siri, siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Zanzotto, F.M. Human-in-the-loop artificial intelligence. J. Artif. Intell. Res. 2019, 64, 243–252. [Google Scholar] [CrossRef]
- Munnukka, J.; Talvitie-Lamberg, K.; Maity, D. Anthropomorphism and social presence in human–virtual service assistant interactions: The role of dialog length and attitudes. Comput. Hum. Behav. 2022, 135, 107343. [Google Scholar] [CrossRef]
- Song, M.; Xing, X.; Duan, Y.; Cohen, J.; Mou, J. Will artificial intelligence replace human customer service? The impact of communication quality and privacy risks on adoption intention. J. Retail. Consum. Serv. 2022, 66, 102900. [Google Scholar] [CrossRef]
- Araujo, T. Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Comput. Hum. Behav. 2018, 85, 183–189. [Google Scholar] [CrossRef]
- Culnan, M.J.; Armstrong, P.K. Information privacy concerns, procedural fairness, and impersonal trust: An empirical investigation. Organ. Sci. 1999, 10, 104–115. [Google Scholar] [CrossRef]
- Keith, M.J.; Thompson, S.C.; Hale, J.; Lowry, P.B.; Greer, C. Information disclosure on mobile devices: Re-examining privacy calculus with actual user behavior. Int. J. Hum. Comput. Stud. 2013, 71, 1163–1173. [Google Scholar] [CrossRef]
- Chellappa, R.K.; Sin, R.G. Personalization versus privacy: An empirical examination of the online consumer’s dilemma. Inf. Technol. Manag. 2005, 6, 181–202. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Zhang, J.; Xu, H. Resolving the privacy paradox: Toward a cognitive appraisal and emotion approach to online privacy behaviors. Inf. Manag. 2017, 54, 1012–1022. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, C.; Huang, S.; Zheng, K.; Young, S.D.; Yan, X.; Yuan, Q. Privacy paradox in mhealth applications: An integrated elaboration likelihood model incorporating privacy calculus and privacy fatigue. Telemat. Inform. 2021, 61, 101601. [Google Scholar] [CrossRef]
- Gonçalves, R.B.; de Figueiredo, J.C.B. Effects of perceived risks and benefits in the formation of the consumption privacy paradox: A study of the use of wearables in people practicing physical activities. Electron. Mark. 2022, 32, 1485–1499. [Google Scholar] [CrossRef]
- Ameen, N.; Hosany, S.; Paul, J. The personalisation-privacy paradox: Consumer interaction with smart technologies and shopping mall loyalty. Comput. Hum. Behav. 2022, 126, 106976. [Google Scholar] [CrossRef]
- Kim, D.; Park, K.; Park, Y.; Ahn, J.-H. Willingness to provide personal information: Perspective of privacy calculus in iot services. Comput. Hum. Behav. 2019, 92, 273–281. [Google Scholar] [CrossRef]
- Zhu, H.; Ou, C.X.J.; Heuvel, W.J.A.M.v.d.; Liu, H. Privacy calculus and its utility for personalization services in e-commerce: An analysis of consumer decision-making. Inf. Manag. 2017, 54, 427–437. [Google Scholar] [CrossRef]
- Norberg, P.A.; Horne, D.R.; Horne, D.A. The privacy paradox: Personal information disclosure intentions versus behaviors. J. Consum. Aff. 2007, 41, 100–126. [Google Scholar] [CrossRef]
- Cloarec, J. The personalization–privacy paradox in the attention economy. Technol. Forecast. Soc. Change 2020, 161, 120299. [Google Scholar] [CrossRef]
- Kim, H.-Y.; McGill, A.L. Minions for the rich? Financial status changes how consumers see products with anthropomorphic features. J. Consum. Res. 2018, 45, 429–450. [Google Scholar] [CrossRef]
- Söderlund, M.; Oikarinen, E.-L. Service encounters with virtual agents: An examination of perceived humanness as a source of customer satisfaction. Eur. J. Mark. 2021, 55, 94–121. [Google Scholar] [CrossRef]
- Hu, P.; Lu, Y.; Gong, Y. Dual humanness and trust in conversational ai: A person-centered approach. Comput. Hum. Behav. 2021, 119, 106727. [Google Scholar] [CrossRef]
- Gursoy, D.; Chi, O.H.; Lu, L.; Nunkoo, R. Consumers acceptance of artificially intelligent (ai) device use in service delivery. Int. J. Inf. Manag. 2019, 49, 157–169. [Google Scholar] [CrossRef]
- Liu, Y. Developing a scale to measure the interactivity of websites. J. Advert. Res. 2003, 43, 207–216. [Google Scholar] [CrossRef]
- Yoo, W.-S.; Lee, Y.; Park, J. The role of interactivity in e-tailing: Creating value and increasing satisfaction. J. Retail. Consum. Serv. 2010, 17, 89–96. [Google Scholar] [CrossRef]
- Korper, S.; Ellis, J. Thinking ahead in e-commerce. Exec. Excell. 2001, 18, 19. [Google Scholar]
- Xue, J.; Liang, X.; Xie, T.; Wang, H. See now, act now: How to interact with customers to enhance social commerce engagement? Inf. Manag. 2020, 57, 103324. [Google Scholar] [CrossRef]
- Childers, T.L.; Carr, C.L.; Peck, J.; Carson, S. Hedonic and utilitarian motivations for online retail shopping behavior. J. Retail. 2001, 77, 511–535. [Google Scholar] [CrossRef]
- Wu, G.; Wu, G. Conceptualizing and measuring the perceived interactivity of websites. J. Curr. Issues Res. Advert. 2006, 28, 87–104. [Google Scholar] [CrossRef]
- Ahn, T.; Ryu, S.; Han, I. The impact of the online and offline features on the user acceptance of internet shopping malls. Electron. Commer. Res. Appl. 2005, 3, 405–420. [Google Scholar]
- Yuan, C.; Zhang, C.; Wang, S. Social anxiety as a moderator in consumer willingness to accept ai assistants based on utilitarian and hedonic values. J. Retail. Consum. Serv. 2022, 65, 102878. [Google Scholar] [CrossRef]
- Choi, S.B.; Lim, M.S. Effects of social and technology overload on psychological well-being in young south korean adults: The mediatory role of social network service addiction. Comput. Hum. Behav. 2016, 61, 245–254. [Google Scholar]
- Hubert, M.; Blut, M.; Brock, C.; Backhaus, C.; Eberhardt, T. Acceptance of smartphone-based mobile shopping:Mobile benefits, customer characteristics, perceived risks and the impact of application context. Psychol. Mark. 2017, 34, 175–194. [Google Scholar]
- Verhoef, P.C.; Stephen, A.T.; Kannan, P.K.; Luo, X.; Abhishek, V.; Andrews, M.; Bart, Y.; Datta, H.; Fong, N.; Hoffman, D.L. Consumer connectivity in a complex, technology-enabled, and mobile-oriented world with smart products. J. Interact. Mark. 2017, 40, 1–8. [Google Scholar]
- Russo, M.; Ollier-Malaterre, A.; Morandin, G. Breaking out from constant connectivity: Agentic regulation of smartphone use. Comput. Hum. Behav. 2019, 98, 11–19. [Google Scholar] [CrossRef]
- Choi, S. The flipside of ubiquitous connectivity enabled by smartphone-based social networking service: Social presence and privacy concern. Comput. Hum. Behav. 2016, 65, 325–333. [Google Scholar]
- Fan, L.; Liu, X.; Wang, B.; Wang, L. Interactivity, engagement, and technology dependence: Understanding users’ technology utilisation behaviour. Behav. Inf. Technol. 2017, 36, 113–124. [Google Scholar] [CrossRef]
- Epley, N. A mind like mine: The exceptionally ordinary underpinnings of anthropomorphism. J. Assoc. Consum. Res. 2018, 3, 591–598. [Google Scholar]
- Lunardo, R.; Mbengue, A. Perceived control and shopping behavior: The moderating role of the level of utilitarian motivational orientation. J. Retail. Consum. Serv. 2009, 16, 434–441. [Google Scholar]
- Kim, K.; Schmierbach, M.G.; Bellur, S.; Chung, M.-Y.; Fraustino, J.D.; Dardis, F.; Ahern, L. Is it a sense of autonomy, control, or attachment? Exploring the effects of in-game customization on game enjoyment. Comput. Hum. Behav. 2015, 48, 695–705. [Google Scholar] [CrossRef]
- Horning, M.A. Interacting with news: Exploring the effects of modality and perceived responsiveness and control on news source credibility and enjoyment among second screen viewers. Comput. Hum. Behav. 2017, 73, 273–283. [Google Scholar] [CrossRef]
- Sundar, S.S.; Marathe, S.S. Personalization versus customization: The importance of agency, privacy, and power usage. Hum. Commun. Res. 2010, 36, 298–322. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, J.Y. Why smartphone advertising attracts customers: A model of web advertising, flow, and personalization. Comput. Hum. Behav. 2014, 33, 256–269. [Google Scholar] [CrossRef]
- Wang, T.; Duong, T.D.; Chen, C.C. Intention to disclose personal information via mobile applications: A privacy calculus perspective. Int. J. Inf. Manag. 2016, 36, 531–542. [Google Scholar] [CrossRef]
- Cyr, D.; Head, M.; Ivanov, A. Perceived interactivity leading to e-loyalty: Development of a model for cognitive–affective user responses. Int. J. Hum. -Comput. Stud. 2009, 67, 850–869. [Google Scholar] [CrossRef]
- Mathur, M.B.; Reichling, D.B.; Lunardini, F.; Geminiani, A.; Antonietti, A.; Ruijten, P.A.; Levitan, C.A.; Nave, G.; Manfredi, D.; Bessette-Symons, B. Uncanny but not confusing: Multisite study of perceptual category confusion in the uncanny valley. Comput. Hum. Behav. 2020, 103, 21–30. [Google Scholar] [CrossRef]
- Ford, M.; Palmer, W. Alexa, are you listening to me? An analysis of alexa voice service network traffic. Pers. Ubiquitous Comput. 2019, 23, 67–79. [Google Scholar] [CrossRef]
- Xu, H.; Teo, H.H.; Tan, B.C.Y.; Agarwal, R. Effects of individual self-protection, industry self-regulation, and government regulation on privacy concerns: A study of location-based services. Inf. Syst. Res. 2012, 23, 1342–1363. [Google Scholar] [CrossRef]
- Ozturk, A.B.; Nusair, K.; Okumus, F.; Singh, D. Understanding mobile hotel booking loyalty: An integration of privacy calculus theory and trust-risk framework. Inf. Syst. Front. 2017, 19, 753–767. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Z.; Guo, Q.; Li, X. The dark side of ubiquitous connectivity in smartphone-based sns: An integrated model from information perspective. Comput. Hum. Behav. 2018, 84, 185–193. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Cai, J. How attachment affects user stickiness on live streaming platforms: A socio-technical approach perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, X.; Chau, P.; Tang, Q. Roles of perceived value and individual differences in the acceptance of mobile coupon applications: Evidence from china. Internet Res. 2015, 25, 471–495. [Google Scholar] [CrossRef]
- Kropp, F.; Lavack, A.M.; Holden, S.J.S. Smokers and beer drinkers: An examination of values and consumer susceptibility to interpersonal influence. J. Consum. Mark. 1999, 16, 536–557. [Google Scholar] [CrossRef]
- Batra, R.; Homer, P.M.; Kahle, L.R. Values, susceptibility to normative influence, and attribute importance weights: A nomological analysis. J. Consum. Psychol. 2001, 11, 115–128. [Google Scholar] [CrossRef]
- Wooten, D.B.; Reed, A., II. Playing it safe: Susceptibility to normative influence and protective self-presentation. J. Consum. Res. 2004, 31, 551–556. [Google Scholar] [CrossRef]
- Bandyopadhyay, N. The role of self-esteem, negative affect and normative influence in impulse buying: A study from india. Mark. Intell. Plan. 2016, 34, 523–539. [Google Scholar] [CrossRef]
- Li, Y.M.; Yeh, Y.S. Increasing trust in mobile commerce through design aesthetics. Comput. Hum. Behav. 2010, 26, 673–684. [Google Scholar] [CrossRef]
- Gao, Q.; Rau, P.L.P.; Salvendy, G. Perception of interactivity: Affects of four key variables in mobile advertising. Int. J. Hum. Comput. Interact. 2009, 25, 479–505. [Google Scholar] [CrossRef]
- Wu, I.L.; Hsiao, W.H. Involvement, content and interactivity drivers for consumer loyalty in mobile advertising: The mediating role of advertising value. Int. J. Mob. Commun. 2017, 15, 577–603. [Google Scholar] [CrossRef]
- Lee, T. The impact of perceptions of interactivity on customer trust and transaction intentions in mobile commerce. J. Electron. Commer. Res. 2005, 6, 165–180. [Google Scholar]
- Xu, X.; Yao, Z.; Sun, Q. Social media environments effect on perceived interactivity. Online Inf. Rev. 2019, 43, 239–255. [Google Scholar] [CrossRef]
- Bearden, W.O.; Netemeyer, R.G.; Teel, J.E. Further validation of the consumer susceptibility to interpersonal influence scale. Adv. Consum. Res. 1990, 17, 770–776. [Google Scholar]
- Mangleburg, T.F.; Doney, P.M.; Bristol, T. Shopping with friends and teens’ susceptibility to peer influence. J. Retail. 2004, 80, 101–116. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, J. Enhancing user experience with conversational agent for movie recommendation: Effects of self-disclosure and reciprocity. Int. J. Hum. Comput. Stud. 2017, 103, 95–105. [Google Scholar] [CrossRef]
- Yang, B.; Kim, Y.; Yoo, C. The integrated mobile advertising model: The effects of technology- and emotion-based evaluations. J. Bus. Res. 2013, 66, 1345–1352. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and intrinsic motivation to use computers in the workplace 1. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chiang, H.-S.; Hsiao, K.-L. What drives stickiness in location-based ar games? An examination of flow and satisfaction. Telemat. Inform. 2018, 35, 1958–1970. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1976. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hsu, S.H.-Y.; Tsou, H.-T.; Chen, J.-S. “Yes, we do. Why not use augmented reality?” customer responses to experiential presentations of ar-based applications. J. Retail. Consum. Serv. 2021, 62, 102649. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Lee, S.Y.; Chung, U.C.; Liu, W.; Duff, B.R.L. Putting the “me” in endorsement: Understanding and conceptualizing dimensions of self-endorsement using intelligent personal assistants. New Media Soc. 2021, 23, 1506–1526. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B.; Dwivedi, Y.K. Shopping intention at ai-powered automated retail stores (aipars). J. Retail. Consum. Serv. 2020, 57, 102207. [Google Scholar] [CrossRef]
- Shin Hyejo, H.; Jeong, M. Guests’ perceptions of robot concierge and their adoption intentions. Int. J. Contemp. Hosp. Manag. 2020, 32, 2613–2633. [Google Scholar] [CrossRef]
- Castillo, D.; Canhoto, A.I.; Said, E. The dark side of ai-powered service interactions: Exploring the process of co-destruction from the customer perspective. Serv. Ind. J. 2020, 41, 900–925. [Google Scholar] [CrossRef]
- Hlee, S.; Park, J.; Park, H.; Koo, C.; Chang, Y. Understanding customer’s meaningful engagement with ai-powered service robots. Inf. Technol. People 2022, 36, 1020–1047. [Google Scholar] [CrossRef]
- Frank, B.; Herbas-Torrico, B.; Schvaneveldt, S.J. The ai-extended consumer: Technology, consumer, country differences in the formation of demand for ai-empowered consumer products. Technol. Forecast. Soc. Change 2021, 172, 121018. [Google Scholar] [CrossRef]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. Int. J. Inf. Manag. 2021, 56, 102251. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Lee, C.T. Hey alexa: Examining the effect of perceived socialness in usage intentions of ai assistant-enabled smart speaker. J. Res. Interact. Mark. 2021, 15, 267–294. [Google Scholar] [CrossRef]
- Joe, S.W.; Tsai, Y.H.; Lin, C.P.; Ma, H.C.; Chiu, C.K. Assessing perceived value: Moderating effects of susceptibility to brand prestige and susceptibility to normative influence. Rev. Manag. Sci. 2017, 11, 717–735. [Google Scholar] [CrossRef]
Items | Smart Interaction | Traditional Interactivity |
---|---|---|
Medium | AVA-enabled devices | Traditional information technologies, such as websites, apps, communities, |
Interfaces | NUI, ACI | CLI, GUI |
Participants | AVAs, users, machines, content | Computers or devices, human |
Unique features | Self-learning, connectivity, linkage, humanness based on affective computing, multimodal inputs, and AI-generated content (AIGC) | - |
Input way | Voices, gestures, eyes, et al. | Command lines, graphical representations |
Input tools | Cameras, microphones, touch screens | Keyboard, mouse |
Goals | Real-time interactions, multimodal interactions, affective interactions, et al. | Limited human–computer interaction, interpersonal interaction |
Constructs | Items | Sources |
---|---|---|
Utilitarian benefit (UN) | UN1. Using my intelligent assistants is a convenient approach for me to manage my time and life. UN2. Completing duties with my AVA simplifies my life. UN3. Employing my AVA helps me to perform many tasks more conveniently. UN4. Using my AVA allows me to complete tasks more swiftly. UN5. I find my AVA is very useful to me in my daily life. | Lee & Choi [95] |
Hedonic benefit (HE) | HE1. It is funny to use my AVA to finish tasks. HE2. The real procedure of using my AVA is amusing. HE3. I find it nice to use my AVA. HE4. It’s entertaining and enjoyable to converse with my AVA. HE5. The AVA services make me feel relaxed. | Yang et al. [96]; Davis et al. [97] |
Privacy risk (PR) | PR1. I’m concerned about the privacy loss of my communications with the AVA. PR2. I’m not concerned that the AVA’s personal information could be stolen or eavesdropped on. PR3. I’m not worried that the AVAs will learn too much about me or my family. | McLean & Osei-Frimpong [19] |
Stickiness intention (SI) | SI1. I anticipate that I will continue to employ AVA products in the future. SI2: I expect to continue using AVA products in the future. SI3. I will devote more time to utilizing AVA products. | Lee et al. [98] |
Characteristics | Number (n) | Percentage (%) |
---|---|---|
Gender | ||
Male | 196 | 50.65 |
Female | 191 | 49.35 |
Age | ||
18–25 | 66 | 17.05 |
26–30 | 168 | 43.41 |
31–40 | 132 | 34.11 |
41–50 | 14 | 3.62 |
≥51 | 7 | 1.81 |
Education | ||
High school/professional high school | 8 | 2.07 |
College | 82 | 21.19 |
University degree | 246 | 63.56 |
≥Graduate degree | 51 | 13.18 |
Monthly disposable Income (RMB) | ||
<1000 | 2 | 0.51 |
1001–3000 | 38 | 9.82 |
3001–5000 | 59 | 15.25 |
5001–7000 | 88 | 22.74 |
>7001 | 200 | 51.68 |
Marital status | ||
Single | 56 | 14.47 |
In love | 32 | 8.27 |
Married without child | 40 | 10.34 |
Married with child | 259 | 66.92 |
Usage experience with AVAs | ||
<3 months | 38 | 9.82 |
3–6 months | 67 | 17.31 |
6–12 months | 89 | 23.00 |
1–2 years | 126 | 32.56 |
>2 years | 67 | 17.31 |
CA | CR | AVE | CN | CO | HE | HU | LK | MC | PE | PR | RE | SI | SN | UN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CN | 0.866 | 0.937 | 0.882 | 0.939 | |||||||||||
CO | 0.801 | 0.871 | 0.627 | 0.527 | 0.792 | ||||||||||
HE | 0.840 | 0.887 | 0.610 | 0.547 | 0.547 | 0.781 | |||||||||
HU | 0.881 | 0.944 | 0.893 | 0.410 | 0.489 | 0.547 | 0.945 | ||||||||
LK | 0.863 | 0.936 | 0.879 | 0.488 | 0.547 | 0.550 | 0.448 | 0.938 | |||||||
MC | 0.882 | 0.911 | 0.629 | 0.308 | 0.245 | 0.375 | 0.196 | 0.273 | 0.793 | ||||||
PE | 0.806 | 0.873 | 0.632 | 0.564 | 0.522 | 0.580 | 0.513 | 0.542 | 0.316 | 0.795 | |||||
PR | 0.880 | 0.926 | 0.806 | 0.524 | 0.471 | 0.477 | 0.549 | 0.553 | 0.042 | 0.546 | 0.898 | ||||
RE | 0.775 | 0.855 | 0.597 | 0.475 | 0.475 | 0.546 | 0.425 | 0.556 | 0.332 | 0.550 | 0.434 | 0.772 | |||
SI | 0.778 | 0.871 | 0.693 | 0.361 | 0.323 | 0.388 | 0.293 | 0.287 | 0.376 | 0.382 | 0.080 | 0.340 | 0.832 | ||
SN | 0.941 | 0.955 | 0.809 | 0.105 | 0.064 | 0.078 | 0.020 | 0.012 | 0.077 | 0.084 | −0.069 | 0.018 | 0.548 | 0.900 | |
UN | 0.908 | 0.925 | 0.608 | 0.636 | 0.613 | 0.597 | 0.540 | 0.634 | 0.410 | 0.660 | 0.522 | 0.596 | 0.394 | 0.048 | 0.780 |
HYPO | Paths | β | T-Value | Bootstrapping 95%CI | Results | |
---|---|---|---|---|---|---|
LLCI | ULCI | |||||
H1a | HU → UN | 0.121 ** | 2.951 | 0.037 | 0.197 | √ |
H1b | MC→ UN | 0.134 *** | 3.770 | 0.063 | 0.204 | √ |
H1c | PE → UN | 0.190 *** | 4.441 | 0.107 | 0.274 | √ |
H1d | RE → UN | 0.120 ** | 3.163 | 0.045 | 0.195 | √ |
H1e | CN → UN | 0.208 *** | 5.219 | 0.129 | 0.286 | √ |
H1f | LK → UN | 0.188 *** | 4.436 | 0.103 | 0.269 | √ |
H1g | CO → UN | 0.153 *** | 3.550 | 0.070 | 0.238 | √ |
H2a | HU → HE | 0.215 *** | 4.788 | 0.127 | 0.304 | √ |
H2b | MC → HE | 0.134 *** | 3.441 | 0.058 | 0.208 | √ |
H2c | PE → HE | 0.134 ** | 2.805 | 0.041 | 0.229 | √ |
H2d | RE → HE | 0.135 * | 2.342 | 0.018 | 0.246 | √ |
H2e | CN → HE | 0.148 ** | 3.279 | 0.056 | 0.233 | √ |
H2f | LK → HE | 0.128 * | 2.536 | 0.027 | 0.227 | √ |
H2g | CO → HE | 0.127 * | 2.516 | 0.033 | 0.226 | √ |
H3a | HU2 → PR | 0.095 *** | 4.040 | 0.072 | 0.166 | √ |
HU → PR | 0.322 *** | 6.928 | 0.228 | 0.410 | √ | |
H3b | MC → PR | −0.170 *** | 4.584 | −0.243 | −0.097 | √ |
H3c | PE → PR | 0.183 *** | 3.459 | 0.075 | 0.283 | √ |
H3d | CN → PR | 0.272 *** | 5.699 | 0.182 | 0.369 | √ |
H3e | LK → PR | 0.298 *** | 6.320 | 0.208 | 0.393 | √ |
H4a | UN → SI | 0.341 *** | 4.283 | 0.172 | 0.486 | √ |
H4b | HE → SI | 0.299 *** | 4.861 | 0.174 | 0.415 | √ |
H5 | PR → SI | −0.241 *** | 4.055 | −0.355 | −0.122 | √ |
Hypotheses | β | Results |
---|---|---|
H6a: SI ← HU × SNI | 0.091 *** | √ |
H6b: SI ← MC × SNI | 0.155 *** | √ |
H6c:SI ← PE × SNI | 0.181 *** | √ |
H6d: SI ← RE × SNI | 0.138 *** | √ |
H6e: SI ← CN × SNI | 0.132 *** | √ |
H6f: SI ← LK × SNI | 0.121 *** | √ |
H6g: SI ← CO × SNI | 0.120 *** | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Liang, X.; Xue, J. Unraveling the Influential Mechanisms of Smart Interactions on Stickiness Intention: A Privacy Calculus Perspective. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2582-2604. https://doi.org/10.3390/jtaer19040124
He J, Liang X, Xue J. Unraveling the Influential Mechanisms of Smart Interactions on Stickiness Intention: A Privacy Calculus Perspective. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(4):2582-2604. https://doi.org/10.3390/jtaer19040124
Chicago/Turabian StyleHe, Jinyi, Xinjian Liang, and Jiaolong Xue. 2024. "Unraveling the Influential Mechanisms of Smart Interactions on Stickiness Intention: A Privacy Calculus Perspective" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 4: 2582-2604. https://doi.org/10.3390/jtaer19040124
APA StyleHe, J., Liang, X., & Xue, J. (2024). Unraveling the Influential Mechanisms of Smart Interactions on Stickiness Intention: A Privacy Calculus Perspective. Journal of Theoretical and Applied Electronic Commerce Research, 19(4), 2582-2604. https://doi.org/10.3390/jtaer19040124