How AI Brand Endorsers Influence Generation MZ’s Consumer Behavior in Metaverse Marketing Scenarios
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. The Metaverse and AI Brand Endorsers (AIBEs)
2.2. Cognitive–Affective–Behavioral Framework
3. Research Model and Hypothesis Development
3.1. Relationship Between Cognitive and Affective Factors
3.2. Relationship Between Affective and Behavioral Factors
3.3. Moderating Effect of Technology Readiness
3.4. Proposed Research Model
4. Research Methods
4.1. Questionnaire Development
4.2. Data Collection
4.3. Sample Analysis
5. Results
5.1. Common Method Bias
5.2. Measurement Model
5.3. Structural Model and Hypothesis Test
5.4. Post Hoc Analyses: Multi-Group Analysis (MGA)
6. Discussion
7. Implications, Limitations, and Future Research Directions
7.1. Implications
7.2. Limitations and Future Research Directions
7.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Construct | Item | Issue | Reference |
---|---|---|---|
Attractiveness (ATT) (4 items) | ATT1 | I find the appearance of AIBE to be very impressive. | (Lee et al., 2021) [52], (Q.-Q. Huang et al., 2022) [41], (Y. Huang & Yu, 2023) [23], (Yu et al., 2023) [42] |
ATT2 | I find the image of AIBE very attractive. | ||
ATT3 | I find the branded products recommended by AIBE appealing. | ||
ATT4 | Overall, I find AIBE very attractive. | ||
Anthropomorphism (ANT) (4 items) | ANT1 | The AIBE behaves like a real person. | (Sestino & D’Angelo, 2023) [37], (Song et al., 2024) [19], (Dabiran et al., 2024) [39] |
ANT2 | The actions and expressions of AIBE feel very realistic to me. | ||
ANT3 | The behavior and language of AIBE are natural. | ||
ANT4 | The AIBE makes me feel like it has emotions and personalities. | ||
Interactivity (INT) (4 items) | INT1 | That AIBE can respond to my questions and needs on social media platforms in a timely manner. | (Um, 2023) [62], (Sestino & D’Angelo, 2023) [37], (Garg & Bakshi, 2024) [59] |
INT2 | My interactions with AIBE are very flexible and pleasant. | ||
INT3 | My interactions with AIBE feel like real social relationships. | ||
INT4 | My interactions with AIBE made me feel very engaged. | ||
Authenticity (AUT) (4 items) | AUT1 | I believe the product information passed on by AIBE is well-founded. | (Lee et al., 2021) [52], (Oliveira & Chimenti, 2021) [53], (Um, 2023) [62] |
AUT 2 | I believe that the information about the products recommended by AIBE is true. | ||
AUT 3 | I believe that the information about the products recommended by AIBE is conclusive. | ||
AUT 4 | I believe that the information provided by AIBE is transparent and not hidden. | ||
Hedonic Motivation (HM) (5 items) | HM1 | I think interacting with AIBE is fun. | (Taglinger et al., 2023) [70], (Xu et al., 2023) [44], (Shao, 2024) [60] |
HM2 | I think AIBE is delightful. | ||
HM3 | I think it’s interesting for brands to have AIBE endorse their products. | ||
HM4 | I have pleasure in buying AIBE-endorsed products. | ||
HM5 | I think AIBE gives me a lot of joy. | ||
Social Presence (SP) (4 items) | SP1 | I feel like AIBE is interacting with me like a real person. | (Gao et al., 2023) [34], (Wang et al., 2023) [36], (Yan et al., 2024) [26] |
SP2 | I feel a sense of intimacy from AIBE. | ||
SP3 | I feel AIBE is very personable. | ||
SP4 | I feel like AIBE is engaging in a real conversation with me. | ||
Trust in AIBEs (TAI) (4 items) | TAI1 | I trust the quality of branded products recommended by AIBE. | (Y. Huang & Yu, 2023) [23], (Wan & Jiang, 2023) [25], (Dabiran et al., 2024) [39] |
TAI2 | I trust that the product content published by AIBE is trustworthy. | ||
TAI3 | I trust that AIBE will not mislead me. | ||
TAI4 | I consider AIBE to be a reliable partner. | ||
Purchase Intention (PI) (4 items) | PI1 | I find products recommended by AIBE to be worthwhile purchases. | (Thomas & Fowler, 2021) [20], (Song et al., 2024) [19], (Wang & Qiu, 2024) [89] |
PI2 | The AIBE recommendation influences my intention to make a purchase. | ||
PI3 | I will be frequently purchase the recommended products by AIBE in the future. | ||
PI4 | I will strongly recommend others to buy products endorsed by AIBE. | ||
Technology Readiness (TR) (7 items) | OPT1 | I think AIBE can improve my quality of life. | (Kim et al., 2020) [75], (Arachchi & Samarasinghe, 2023) [72], (Kang et al., 2024) [73] |
OPT 2 | I am optimistic about the future of AIBE. | ||
OPT3 | I think AIBE will bring more convenience and opportunities. | ||
OPT4 | I believe that AIBE can make my shopping experience better. | ||
INN1 | I am more likely to buy products recommended by AIBE. | ||
INN 2 | I usually don’t need help from others to learn about AIBE. | ||
INN 3 | I keep up with the latest technological developments in the AIBE field. |
References
- Qi, Y.; Sun, Y. Visualization and Bibliometric Analysis of Research Evolution on Digital Human. In Proceedings of the 2023 6th International Conference on Big Data Technologies, Qingdao, China, 22 September 2023; ACM: New York, NY, USA, 2023; pp. 181–188. [Google Scholar]
- Petkov, M. Unlocking the Potential of the Metaverse for Branding. Available online: https://www.linkedin.com/pulse/unlocking-potential-metaverse-branding-martin-petkov (accessed on 4 May 2024).
- Sands, S.; Ferraro, C.; Demsar, V.; Chandler, G. False Idols: Unpacking the Opportunities and Challenges of Falsity in the Context of Virtual Influencers. Bus. Horiz. 2022, 65, 777–788. [Google Scholar] [CrossRef]
- Jafar, R.M.S.; Ahmad, W.; Sun, Y. Unfolding the Impacts of Metaverse Aspects on Telepresence, Product Knowledge, and Purchase Intentions in the Metaverse Stores. Technol. Soc. 2023, 74, 102265. [Google Scholar] [CrossRef]
- Robinson, B. Towards an Ontology and Ethics of Virtual Influencers. Australas. J. Inf. Syst. 2020, 24. [Google Scholar] [CrossRef]
- Barbosa, B. Virtual Influencers: A Bibliometric Analysis. In Using Influencer Marketing as a Digital Business Strategy; IGI Global: Hershey, PA, USA, 2024; pp. 163–188. ISBN 9798369305515. [Google Scholar]
- Global, K.E.D. Virtual Humans Expand Territory in Real World. Available online: https://www.kedglobal.com/artificial-intelligence/newsView/ked202205310020 (accessed on 23 April 2024).
- King, C. What Are Virtual Influencers and How Do They Work? Available online: https://hypeauditor.com/blog/the-rise-of-virtual-influencers-should-you-be-working-with-them/ (accessed on 4 May 2024).
- Rodrigo-Martín, L.; Rodrigo-Martín, I.; Muñoz-Sastre, D. Los Influencers Virtuales Como Herramienta Publicitaria En La Promoción de Marcas y Productos. Estudio de La Actividad Comercial de Lil Miquela. Rev. Lat. Comun. Soc 2021, 79, 69–90. [Google Scholar] [CrossRef]
- Gerlich, M. The Power of Virtual Influencers: Impact on Consumer Behaviour and Attitudes in the Age of AI. Adm. Sci. 2023, 13, 178. [Google Scholar] [CrossRef]
- Who Is Lu of Magalu? @magazineluiza, Explained. Available online: https://www.virtualhumans.org/human/lu-do-magalu (accessed on 4 May 2024).
- Shen, Z. Shall Brands Create Their Own Virtual Influencers? A Comprehensive Study of 33 Virtual Influencers on Instagram. Humanit. Soc. Sci. Commun. 2024, 11, 177. [Google Scholar] [CrossRef]
- Tesic, D.; Bogetić, Z. Models of Consumer Behavior: A Literature Review. Open J. Syst. 2022, 16, 21. [Google Scholar] [CrossRef]
- Lim, S.H.; Kim, D.J. Does Emotional Intelligence of Online Shoppers Affect Their Shopping Behavior? From a Cognitive-Affective-Conative Framework Perspective. Int. J. Hum.–Comput. Interact. 2020, 36, 1304–1313. [Google Scholar] [CrossRef]
- Dirwan, D.; Latief, F. Understanding the Psychology Behind Consumer Behavior. Adv. Bus. Ind. Mark. Res. 2023, 1, 130–145. [Google Scholar] [CrossRef]
- Hussin, H.; Abdul Wahid, N. Conceptualizing Customer Experience in Organic Food Purchase Using Cognitive-Affective-Behavior Model. J. Gov. Integr. 2023, 6, 577–586. [Google Scholar] [CrossRef]
- Huang, Y. The Effect of Virtual Endorserson Chinese Consumer’s Brand Attitude. Thammasat Rev. 2023, 26, 92113. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, H.; Xie, Q. AI Influencers in Advertising: The Role of AI Influencer-Related Attributes in Shaping Consumer Attitudes, Consumer Trust, and Perceived Influencer–Product Fit. J. Interact. Advert. 2024, 24, 26–47. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Zhang, Z.; Hikkerova, L. AI or Human: How Endorser Shapes Online Purchase Intention? Comput. Hum. Behav. 2024, 158, 108300. [Google Scholar] [CrossRef]
- Thomas, V.L.; Fowler, K. Close Encounters of the AI Kind: Use of AI Influencers As Brand Endorsers. J. Advert. 2021, 50, 11–25. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, X.; Zhai, M.; Zhang, D.; Li, G. AI or Human? The Effect of Streamer Types on Consumer Purchase Intention in Live Streaming. Int. J. Hum.–Comput. Interact. 2024, 41, 305–317. [Google Scholar] [CrossRef]
- Cheah, C.W.; Koay, K.Y.; Lim, W.M. Social Media Influencer Over-Endorsement: Implications from a Moderated-Mediation Analysis. J. Retail. Consum. Serv. 2024, 79, 103831. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, Z. Understanding the Continuance Intention for Artificial Intelligence News Anchor: Based on the Expectation Confirmation Theory. Systems 2023, 11, 438. [Google Scholar] [CrossRef]
- Hwang, S.-I.; Ki, C. Impact of Virtual Idol Characteristics on Flow of Viewers, Performance Satisfaction, and Intention of Reviewing. J. Digit. Contents Soc. 2023, 24, 2277–2286. [Google Scholar] [CrossRef]
- Wan, A.; Jiang, M. Can Virtual Influencers Replace Human Influencers in Live-Streaming E-Commerce? An Exploratory Study from Practitioners’ and Consumers’ Perspectives. J. Curr. Issues Res. Advert. 2023, 44, 332–372. [Google Scholar] [CrossRef]
- Yan, J.; Xia, S.; Jiang, A.; Lin, Z. The Effect of Different Types of Virtual Influencers on Consumers’ Emotional Attachment. J. Bus. Res. 2024, 177, 114646. [Google Scholar] [CrossRef]
- Abilkaiyrkyzy, A.; Elhagry, A.; Laamarti, F.; Saddik, A.E. Metaverse Key Requirements and Platforms Survey. IEEE Access 2023, 11, 117765–117787. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S.; Yang, W.; Fang, M.; Pan, Y. Beyond Reality: Exploring User Experiences in the Metaverse Art Exhibition Platform from an Integrated Perspective. Electronics 2024, 13, 1023. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Wang, Y.; Alalwan, A.A.; Ahn, S.J.; Balakrishnan, J.; Barta, S.; Belk, R.; Buhalis, D.; Dutot, V.; et al. Metaverse Marketing: How the Metaverse Will Shape the Future of Consumer Research and Practice. Psychol. Mark. 2023, 40, 750–776. [Google Scholar] [CrossRef]
- Metaverse Influencer Marketing: Role, Future, and Top Influencers—Landvault Blog. Available online: https://landvault.io/blog/metaverse-influencer-marketing (accessed on 4 May 2024).
- Nan, L. Introducing China’s Top Virtual Idols: Ayayi and Luo Tianyi. Available online: https://jingdaily.com/posts/virtual-idols-china-celebrities-crackdown-ayayi-luo-tianyi (accessed on 23 April 2024).
- Vila-López, N.; Kuster-Boluda, I.; Mora-Pérez, E.; Pascual-Riquelme, I. A Bibliometric Analysis of Virtual Influencers in the Web of Science. J. Mark. Anal. 2023. [Google Scholar] [CrossRef]
- Lou, C.; Kiew, S.T.J.; Chen, T.; Lee, T.Y.M.; Ong, J.E.C.; Phua, Z. Authentically Fake? How Consumers Respond to the Influence of Virtual Influencers. J. Advert. 2023, 52, 540–557. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, N.; Guo, Q. How Do Virtual Streamers Affect Purchase Intention in the Live Streaming Context? A Presence Perspective. J. Retail. Consum. Serv. 2023, 73, 103356. [Google Scholar] [CrossRef]
- Franke, C.; Groeppel-Klein, A.; Müller, K. Consumers’ Responses to Virtual Influencers as Advertising Endorsers: Novel and Effective or Uncanny and Deceiving? J. Advert. 2023, 52, 523–539. [Google Scholar] [CrossRef]
- Wang, K.; Wu, J.; Sun, Y.; Chen, J.; Pu, Y.; Qi, Y. Trust in Human and Virtual Live Streamers: The Role of Integrity and Social Presence. Int. J. Hum.–Comput. Interact. 2023, 40, 8274–8294. [Google Scholar] [CrossRef]
- Sestino, A.; D’Angelo, A. My Doctor Is an Avatar! The Effect of Anthropomorphism and Emotional Receptivity on Individuals’ Intention to Use Digital-Based Healthcare Services. Technol. Forecast. Soc. Change 2023, 191, 122505. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Q. Impact of Using Virtual Avatars in Educational Videos on User Experience. Sci. Rep. 2024, 14, 6592. [Google Scholar] [CrossRef]
- Dabiran, E.; Farivar, S.; Wang, F.; Grant, G. Virtually Human: Anthropomorphism in Virtual Influencer Marketing. J. Retail. Consum. Serv. 2024, 79, 103797. [Google Scholar] [CrossRef]
- Moustakas, E.; Lamba, N.; Mahmoud, D.; Ranganathan, C. Blurring Lines between Fiction and Reality: Perspectives of Experts on Marketing Effectiveness of Virtual Influencers. In Proceedings of the 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June 2020; pp. 1–6. [Google Scholar]
- Huang, Q.-Q.; Qu, H.-J.; Li, P. The Influence of Virtual Idol Characteristics on Consumers’ Clothing Purchase Intention. Sustainability 2022, 14, 8964. [Google Scholar] [CrossRef]
- Yu, Y.; Kwong, S.C.M.; Bannasilp, A. Virtual Idol Marketing: Benefits, Risks, and an Integrated Framework of the Emerging Marketing Field. Heliyon 2023, 9, e22164. [Google Scholar] [CrossRef]
- Haikel-Elsabeh, M. Virtual Influencers versus Real Influencers Advertising in the Metaverse, Understanding the Perceptions, and Interactions with Users. J. Curr. Issues Res. Advert. 2023, 44, 252–273. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Li, H.; Yoo, C.; Pan, Y. Is Everyone an Artist? A Study on User Experience of AI-Based Painting System. Appl. Sci. 2023, 13, 6496. [Google Scholar] [CrossRef]
- Soomro, S.A.; Eyupoglu, S.Z.; Ali, F. Linking Customer Mindsets, Brand Engagement, and Citizenship Behavior: The Moderating Role of Brand Trust. J. Prod. Brand Manag. 2024, 33, 385–396. [Google Scholar] [CrossRef]
- Gursoy, D.; Chi, O.H.; Lu, L.; Nunkoo, R. Consumers Acceptance of Artificially Intelligent (AI) Device Use in Service Delivery. Int. J. Inf. Manag. 2019, 49, 157–169. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; He, W.; Wuji, S.; Luo, R. The Impact of Artificial Intelligence Voice Assistants on Consumer Experience Based on the Cognitive-Affective-Conative Model. SSRN J. 2022. [Google Scholar] [CrossRef]
- Chen, C.-F.; Girish, V.G. Investigating the Use Experience of Restaurant Service Robots: The Cognitive–Affective–Behavioral Framework. Int. J. Hosp. Manag. 2023, 111, 103482. [Google Scholar] [CrossRef]
- Huang, D.; Chen, Q.; Huang, J.; Kong, S.; Li, Z. Customer-Robot Interactions: Understanding Customer Experience with Service Robots. Int. J. Hosp. Manag. 2021, 99, 103078. [Google Scholar] [CrossRef]
- Fiore, A.M.; Kim, J. An Integrative Framework Capturing Experiential and Utilitarian Shopping Experience. Int. J. Retail. Distrib. Manag. 2007, 35, 421–442. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Nie, K.; Gu, C. How Do Anchors’ Characteristics Influence Consumers’ Behavioural Intention in Livestream Shopping? A Moderated Chain-Mediation Explanatory Model. Front. Psychol. 2021, 12, 730636. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Seong Chou, H.; Yuran, P. Virtual influencers’ impacts on brand attitudes and purchasing intention of services and products. Inf. Soc. Media 2021, 22, 55–79. [Google Scholar] [CrossRef]
- Da Silva Oliveira, A.B.; Chimenti, P. “Humanized Robots”: A Proposition of Categories to Understand Virtual Influencers. Australas. J. Inf. Syst. 2021, 25, 1–27. [Google Scholar] [CrossRef]
- Zhao, D.; Han, K. How Virtual Influencer Characteristics Affect Purchase Intention: Focusing on Uncanny Valley Theory. Korean J. Advert. Public Relat. 2022, 24, 135–169. [Google Scholar] [CrossRef]
- Mouritzen, S.L.T.; Penttinen, V.; Pedersen, S. Virtual Influencer Marketing: The Good, the Bad and the Unreal. Eur. J. Mark. 2023, 58, 410–440. [Google Scholar] [CrossRef]
- Yang, J.; Chuenterawong, P.; Lee, H.; Chock, T.M. Anthropomorphism in CSR Endorsement: A Comparative Study on Humanlike vs. Cartoonlike Virtual Influencers’ Climate Change Messaging. J. Promot. Manag. 2023, 29, 705–734. [Google Scholar] [CrossRef]
- Kim, H.; Park, M. Virtual Influencers’ Attractiveness Effect on Purchase Intention: A Moderated Mediation Model of the Product–Endorser Fit with the Brand. Comput. Hum. Behav. 2023, 143, 107703. [Google Scholar] [CrossRef]
- Allal-Chérif, O.; Puertas, R.; Carracedo, P. Intelligent Influencer Marketing: How AI-Powered Virtual Influencers Outperform Human Influencers. Technol. Forecast. Soc. Change 2024, 200, 123113. [Google Scholar] [CrossRef]
- Garg, M.; Bakshi, A. Exploring the Impact of Beauty Vloggers’ Credible Attributes, Parasocial Interaction, and Trust on Consumer Purchase Intention in Influencer Marketing. Humanit. Soc. Sci. Commun. 2024, 11, 235. [Google Scholar] [CrossRef]
- Shao, Z. From Human to Virtual: Unmasking Consumer Switching Intentions to Virtual Influencers by an Integrated fsQCA and NCA Method. J. Retail. Consum. Serv. 2024, 78, 103715. [Google Scholar] [CrossRef]
- Koles, B.; Audrezet, A.; Moulard, J.G.; Ameen, N.; McKenna, B. The Authentic Virtual Influencer: Authenticity Manifestations in the Metaverse. J. Bus. Res. 2024, 170, 114325. [Google Scholar] [CrossRef]
- Um, N. Predictors Affecting Effects of Virtual Influencer Advertising among College Students. Sustainability 2023, 15, 6388. [Google Scholar] [CrossRef]
- Yu, J.; Dickinger, A.; So, K.K.F.; Egger, R. Artificial Intelligence-Generated Virtual Influencer: Examining the Effects of Emotional Display on User Engagement. J. Retail. Consum. Serv. 2024, 76, 103560. [Google Scholar] [CrossRef]
- Kim, H.; Park, M. When Digital Celebrity Talks to You: How Human-like Virtual Influencers Satisfy Consumer’s Experience through Social Presence on Social Media Endorsements. J. Retail. Consum. Serv. 2024, 76, 103581. [Google Scholar] [CrossRef]
- Ku, E.C.S. Anthropomorphic Chatbots as a Catalyst for Marketing Brand Experience: Evidence from Online Travel Agencies. Curr. Issues Tour. 2023, 27, 4165–4184. [Google Scholar] [CrossRef]
- Jain, R. The Influence of Anthropomorphic Spokescharacters on Consumers’ Recycling Intentions. Ph.D. Dissertation, Queensland University of Technology, Brisbane, QLD, Australia, 2021. [Google Scholar]
- Byun, K.J.; Ahn, S.J. (Grace) A Systematic Review of Virtual Influencers: Similarities and Differences between Human and Virtual Influencers in Interactive Advertising. J. Interact. Advert. 2023, 23, 293–306. [Google Scholar] [CrossRef]
- Yin, J.; Qiu, X. AI Technology and Online Purchase Intention: Structural Equation Model Based on Perceived Value. Sustainability 2021, 13, 5671. [Google Scholar] [CrossRef]
- Li, S.; Ham, J.; Eastin, M.S. Social Media Users’ Affective, Attitudinal, and Behavioral Responses to Virtual Human Emotions. Telemat. Inform. 2024, 87, 102084. [Google Scholar] [CrossRef]
- Taglinger, M.; Jordan, S.; Kracklauer, A.H. Acceptance of Artificially Intelligent Digital Humans in Online Shops: A Modelling Approach. J. Appl. Interdiscip. Res. 2023, 28–49. [Google Scholar] [CrossRef]
- Nadeem, W.; Khani, A.H.; Schultz, C.D.; Adam, N.A.; Attar, R.W.; Hajli, N. How Social Presence Drives Commitment and Loyalty with Online Brand Communities? The Role of Social Commerce Trust. J. Retail. Consum. Serv. 2020, 55, 102136. [Google Scholar] [CrossRef]
- Arachchi, H.A.D.M.; Samarasinghe, G.D. Intention to Adopt Intelligent Clothing in the Fashion Retail Industry: Extending the HISAM Model with Technology Readiness. Int. J. Hum.–Comput. Interact. 2023, 40, 6374–6388. [Google Scholar] [CrossRef]
- Kang, W.; Shao, B.; Zhang, Y. How Does Interactivity Shape Users’ Continuance Intention of Intelligent Voice Assistants? Evidence from SEM and fsQCA. Psychol. Res. Behav. Manag. 2024, 17, 867–889. [Google Scholar] [CrossRef] [PubMed]
- Seong, B.-H.; Hong, C.-Y. Corroborating the Effect of Positive Technology Readiness on the Intention to Use the Virtual Reality Sports Game “Screen Golf”: Focusing on the Technology Readiness and Acceptance Model. Inf. Process. Manag. 2022, 59, 102994. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, C.-K.; Preis, M.W. The Impact of Innovation and Gratification on Authentic Experience, Subjective Well-Being, and Behavioral Intention in Tourism Virtual Reality: The Moderating Role of Technology Readiness. Telemat. Inform. 2020, 49, 101349. [Google Scholar] [CrossRef]
- Yu, H. Who Is Rozy, South Korea’s First Virtual Influencer? Available online: https://www.tatlerasia.com/style/fashion/rozy-virtual-influencer-south-korea (accessed on 19 July 2024).
- Service (KOCIS), K.C. and I. AI Model Rozy Gives “interview” on Career, Interests: Korea.Net: The Official Website of the Republic of Korea. Available online: https://www.korea.net/NewsFocus/HonoraryReporters/view?articleId=206305 (accessed on 19 July 2024).
- MVFW—LOCUS-X x OHROZY x ILONA SONG Fashion Show by Exclusible. Available online: https://decentraland.org/events/event/?id=f88bfe1a-0d25-4053-bcf7-447f168bf98f (accessed on 19 July 2024).
- Na, Y.; Kim, Y.; Lee, D. Investigating the Effect of Self-Congruity on Attitudes toward Virtual Influencers: Mediating the Effect of Emotional Attachment. Int. J. Hum.–Comput. Interact. 2023, 40, 5534–5547. [Google Scholar] [CrossRef]
- Chen, E. The Power of AI: How Virtual Korean Influencer Rozy Is Set to Earn $2 Million in Sponsorships. Available online: https://www.linkedin.com/pulse/power-ai-how-virtual-korean-influencer-rozy-set-earn-2-erik-chen (accessed on 24 April 2024).
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2014; ISBN 978-1-4522-1744-4. [Google Scholar]
- Shanthi, R. Multivariate Data Analysis: Using Spss snd Amos; MJP Publishers: Chennai, India, 2019. [Google Scholar]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Chin, W.; Marcoulides, G. The Partial Least Squares Approach to Structural Equation Modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Amora, J.T. Convergent Validity Assessment in PLS-SEM: A Loadings-Driven Approach. Data Anal. Perspect. J. 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Gupta, G.; Singharia, K. Consumption of OTT Media Streaming in COVID-19 Lockdown: Insights from PLS Analysis. Vision 2021, 25, 36–46. [Google Scholar] [CrossRef]
- Lee, J.A.; Sudarshan, S.; Sussman, K.L.; Bright, L.F.; Eastin, M.S. Why Are Consumers Following Social Media Influencers on Instagram? Exploration of Consumers’ Motives for Following Influencers and the Role of Materialism. Int. J. Advert. 2022, 41, 78–100. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, S.; Luthra, S.; Kumar, A. Impact of Digital Assistant Attributes on Millennials’ Purchasing Intentions: A Multi-Group Analysis Using PLS-SEM, Artificial Neural Network and fsQCA. Inf. Syst. Front. 2024, 26, 943–966. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qiu, X. The Positive Effect of Artificial Intelligence Technology Transparency on Digital Endorsers: Based on the Theory of Mind Perception. J. Retail. Consum. Serv. 2024, 78, 103777. [Google Scholar] [CrossRef]
Name | Time | Occupation | Platform | Fans | Nation | Brands | Company | Picture | Type |
---|---|---|---|---|---|---|---|---|---|
Lu Do Magalu | 2009.8.13 | Virtual ambassador | 693 w | Brazil | 16 brands (Adidas, Red Bull, MAC, Maybelline, Samsung) | Magazine Luiza | A | ||
Lil Miquela | 2016.4.23 | Global pop star | 261 w | USA | 47 brands (Chanel, Prada, UGG, Calvin Klein, Burberry, LV) | Brud | A | ||
Shudu | 2017.4.22 | Digital supermodel | 240 w | South Africa | 34 brands (LV, Cosmopolitan, Vogue, Air Jordans, Ferragamo, Prada, CK) | The Digitals | A | ||
Noonoouri | 2018.2.1 | Activist | 44 w | France | 43 brands (Dior, Honor, Gucci, Skims, Prada, Lacoste, Versace) | IMG Models | B | ||
Imma | 2018.7.12 | Fashion girl | 38.8 w | Japan | 11 brands (IKEA, Amazon, Dior, Puma, Nike, Coach, SK-II, Lenovo) | aww.tokyo | A | ||
Guggimon | 2019.6.18 | Fashion horror artist | 136 w | USA | 5 brands (Gucci, Rico Nasty, Snoop Dogg) | Superplastic | C | ||
Nobody Sausage | 2020.4.5 | Happy partner | 788 w | Portugal | 30 brands (Hugo Boss, Netflix, Adidas, Boss, Lotte) | Kael Cabral | C | ||
Oh Rozy | 2020.8.19 | Singer, model | 16.8 w | Republic of Korea | 50 brands (Tiffany & Co, Hera, CK) | Sidus Studio X | A | ||
Liu Yexi | 2021.10.31 | Virtual beauty artist | TikTok | 809 w | China | 200 brands (Xiaopeng Motors, VIVO, Clarins, Anta) | Chuangyi Video | A |
Authors | Object/Field | IV | MV | DV | Main Findings |
---|---|---|---|---|---|
W. Gao et al. [34] | Virtual streamers, live streaming commerce | Likeability, animacy, responsiveness, social presence, telepresence | / | Purchase intention | Likability, animacy, and responsiveness enhance social presence and telepresence, thus promoting purchase intentions. Likability and responsiveness directly increase purchase intentions, but animacy does not. |
Franke et al. [35] | Virtual advertising endorsers, advertising industry | Attitude toward the influencer, perceived novelty, perceived innovativeness, labeling information, attitude toward perceived expertise | Product category | Purchase intention | Virtual endorsers lead to higher ad novelty. Advertised product categories moderated purchase intentions. |
Wang et al. [36] | Virtual live streamers, live business | Integrity, ability, benevolence, perceived predictability, trust, social presence, perceived enjoyment, perceived similarity | / | Purchase intention | Social presence affects trust in both types of virtual live streamers, but it only directly affects purchase intentions. Perceived enjoyment and similarity also affect purchase intentions. |
Sestino and D’Angelo [37] | Virtual agents, digital healthcare service | Perceived anthropomorphism, intention to use, human-like interaction level (low vs. high) | Emotional receptivity | Intention to use | Higher levels of interaction with humans positively influence an individual’s intention to use such medical services through the effect of perceived anthropomorphism. This effect is only significant in individuals with higher emotional receptivity. |
Y. Huang and Yu [23] | Virtual news anchors, television news industry | Perceived anthropomorphism, perceived intelligence, perceived attractiveness, perceived novelty, information quality, trust, satisfaction, confirmation of expectations | / | Continuance intention | Satisfaction, perceived intelligence, and trust directly predicted continuance intention. |
J. Gao et al. [21] | Virtual streamers, online shopping | Streamer type, perceived intimacy, perceived responsiveness | Consumers’novelty seeking | Consumer purchase intention | Compared with virtual streamers, consumers have higher purchase intention when they receive services from human streamers. Perceived intimacy and perceived responsiveness positively affect consumers’ purchase intention. |
Cheah et al. [22] | Virtual influencers, social media | Over-endorsement, influencer authenticity, influencer credibility | Product interest | Purchase intentions | Over-endorsement did not directly affect consumers’ purchase intentions; reduced credibility of SMEs can moderate purchase intentions. |
Zhang and Wu [38] | Virtual avatars, educational science | Video quality, content quality, virtual avatar expressiveness, | / | Learning effect, emotional experience, user engagement | High levels of avatar expressiveness can significantly improve user learning, emotional experience, and user engagement, and the content quality dimension of the influencing factor has a significant negative effect on all three dimensions of the user experience. |
Dabiran et al. [39] | Virtual humans, marketing | Appearance, moral virtue, cognitive experience, conscious emotionality, perceived credibility, parasocial relationships | Influencer–product congruence | Purchase intention | Appearance had no significant effect on conscious emotion. Perceived credibility and parasocial relationships both had a positive effect on purchase intentions, with the effect of parasocial relationships being stronger. |
VI Characteristic | Relevant Words | Definition | Sources |
---|---|---|---|
Attractiveness | / | AIVIs have the appearance or character to attract the attention and interest of consumers. | A, B, C, D, E, G, H, J, M, N, P, Q |
Professionalism | Expertise | AIVIs have professional knowledge and technical expertise in a specific field or industry. | A, D, E, M, O, P, Q |
Authenticity | Trustworthiness, Reliability | AIVIs are reliable; consumers trust their words and actions and create an emotional connection with AIVIs. | B, C, E, P, T, U |
Anthropomorphism | Integrity, Benevolence, Cuteness, Likeability, Animacy, Curiosity | AIVIs have a human-like appearance and behavioral characteristics that make consumers feel close to them. | B, C, D, E, H, I, K, L, R, S, U |
Scalability | Transcendence | AIVIs can adapt flexibly to different application scenarios and brand needs. | C, J |
Controllability | Ownership, Customization, Automation, Stability | AIVIs can be easily controlled and adjusted in terms of their behavior, performance, or expression by the designer. | C, F, J |
Popularity | Commerciality | AIVIs are popular among consumers and have a large influence. | D, J |
Relevance | / | AIVIs can have strong relevance to specific themes, topics, and target audiences. | D, O |
Homogeneity | Similarity | AIVIs may have similarities to real humans in appearance, behavior, and personality. | D, E, G, J, M |
Exposure | / | AIVIs have high exposure and visibility on social media or platforms. | G |
Intelligence | Responsiveness, Ability | AIVIs have the ability to simulate human expressions and actions. | H, I, K, S |
Predictability | / | AIVIs can use big data to make predictions about consumer behavior. | K |
Parasocial Interaction | / | AIVIs interact with consumers in a way similar to genuine social relationships. | L, Q, U |
Variable | Category | Frequency (n = 302) | Percent (%) |
---|---|---|---|
Gender | Male | 146 | 48.3 |
Female | 156 | 51.7 | |
Age (years) | 18~29 (Gen Z) | 158 | 52.3 |
30~44 (Gen M) | 144 | 47.7 | |
Education | Below undergraduate | 106 | 35.1 |
Undergraduate | 163 | 54.0 | |
Postgraduate | 21 | 7.0 | |
Doctor | 12 | 4.0 | |
Occupation | University students | 106 | 35.1 |
Workers | 196 | 64.9 | |
Monthly income (CNY) | ≤CNY 3000 | 116 | 38.4 |
CNY 3001–6000 | 139 | 46.0 | |
CNY 6001–9000 | 34 | 11.3 | |
CNY 9001–12,000 | 7 | 2.3 | |
≥CNY 12,001 | 6 | 2.0 | |
Explore AIBE-recommended products | Yes | 302 | 84.36 |
No | 56 | 15.64 | |
Total participants | 100.0 |
Construct | CA | CR | AVE | |
---|---|---|---|---|
Cognitive | Attractiveness (ATT) | 0.934 | 0.953 | 0.834 |
Anthropomorphism (ANT) | 0.922 | 0.945 | 0.810 | |
Interactivity (INT) | 0.930 | 0.950 | 0.826 | |
Authenticity (AUT) | 0.934 | 0.953 | 0.835 | |
Affective | Hedonic motivation (HM) | 0.945 | 0.958 | 0.820 |
Social presence (SP) | 0.927 | 0.948 | 0.821 | |
Trust in AIBEs (TAI) | 0.937 | 0.955 | 0.840 | |
Behavioral | Purchase intention (PI) | 0.934 | 0.953 | 0.835 |
Technology Readiness | Optimism (OPT) | 0.934 | 0.953 | 0.835 |
Innovativeness (INN) | 0.906 | 0.941 | 0.841 |
ATT | ANT | INT | AUT | HM | SP | TAI | PI | OPT | INN | |
---|---|---|---|---|---|---|---|---|---|---|
ATT | 0.913 | |||||||||
ANT | 0.269 | 0.900 | ||||||||
INT | 0.214 | 0.268 | 0.909 | |||||||
AUT | 0.333 | 0.322 | 0.360 | 0.914 | ||||||
HM | 0.330 | 0.295 | 0.284 | 0.448 | 0.905 | |||||
SP | 0.309 | 0.317 | 0.393 | 0.350 | 0.319 | 0.906 | ||||
TAI | 0.264 | 0.303 | 0.389 | 0.428 | 0.371 | 0.341 | 0.917 | |||
PI | 0.168 | 0.241 | 0.273 | 0.272 | 0.230 | 0.328 | 0.285 | 0.914 | ||
OPT | 0.268 | 0.340 | 0.333 | 0.352 | 0.404 | 0.411 | 0.425 | 0.426 | 0.914 | |
INN | 0.363 | 0.282 | 0.197 | 0.273 | 0.371 | 0.299 | 0.366 | 0.252 | 0.235 | 0.917 |
ATT | ANT | INT | AUT | HM | SP | TAI | PI | OPT | INN | |
---|---|---|---|---|---|---|---|---|---|---|
ATT | - | |||||||||
ANT | 0.288 | - | ||||||||
INT | 0.227 | 0.287 | - | |||||||
AUT | 0.354 | 0.346 | 0.383 | - | ||||||
HM | 0.350 | 0.314 | 0.298 | 0.477 | - | |||||
SP | 0.331 | 0.341 | 0.420 | 0.375 | 0.340 | - | ||||
TAI | 0.281 | 0.323 | 0.413 | 0.456 | 0.394 | 0.365 | - | |||
PI | 0.180 | 0.257 | 0.292 | 0.289 | 0.244 | 0.350 | 0.302 | - | ||
OPT | 0.287 | 0.366 | 0.354 | 0.377 | 0.432 | 0.443 | 0.453 | 0.452 | - | |
INN | 0.395 | 0.308 | 0.215 | 0.296 | 0.398 | 0.324 | 0.397 | 0.270 | 0.259 | - |
ATT | ANT | INT | AUT | HM | SP | TAI | PI | OPT | INN | |
---|---|---|---|---|---|---|---|---|---|---|
ATT1 | 0.909 | 0.227 | 0.154 | 0.240 | 0.269 | 0.262 | 0.231 | 0.160 | 0.225 | 0.333 |
ATT2 | 0.917 | 0.262 | 0.211 | 0.377 | 0.340 | 0.266 | 0.291 | 0.180 | 0.286 | 0.368 |
ATT3 | 0.922 | 0.207 | 0.198 | 0.297 | 0.310 | 0.309 | 0.227 | 0.138 | 0.244 | 0.317 |
ATT4 | 0.905 | 0.287 | 0.213 | 0.295 | 0.281 | 0.289 | 0.212 | 0.137 | 0.221 | 0.308 |
ANT1 | 0.251 | 0.902 | 0.242 | 0.259 | 0.251 | 0.294 | 0.271 | 0.227 | 0.309 | 0.257 |
ANT2 | 0.211 | 0.908 | 0.230 | 0.290 | 0.253 | 0.242 | 0.260 | 0.220 | 0.301 | 0.216 |
ANT3 | 0.275 | 0.895 | 0.250 | 0.313 | 0.306 | 0.306 | 0.311 | 0.221 | 0.304 | 0.265 |
ANT4 | 0.224 | 0.895 | 0.240 | 0.294 | 0.247 | 0.292 | 0.242 | 0.199 | 0.310 | 0.271 |
INT1 | 0.197 | 0.259 | 0.908 | 0.326 | 0.266 | 0.326 | 0.328 | 0.301 | 0.271 | 0.201 |
INT2 | 0.213 | 0.272 | 0.915 | 0.370 | 0.313 | 0.395 | 0.402 | 0.241 | 0.348 | 0.165 |
INT3 | 0.184 | 0.216 | 0.914 | 0.294 | 0.252 | 0.359 | 0.330 | 0.222 | 0.300 | 0.164 |
INT4 | 0.179 | 0.221 | 0.897 | 0.311 | 0.186 | 0.339 | 0.345 | 0.231 | 0.283 | 0.192 |
AUT1 | 0.303 | 0.283 | 0.341 | 0.911 | 0.377 | 0.357 | 0.389 | 0.255 | 0.320 | 0.260 |
AUT 2 | 0.306 | 0.307 | 0.359 | 0.917 | 0.444 | 0.334 | 0.395 | 0.282 | 0.345 | 0.250 |
AUT 3 | 0.290 | 0.269 | 0.313 | 0.914 | 0.412 | 0.298 | 0.394 | 0.221 | 0.319 | 0.233 |
AUT 4 | 0.318 | 0.318 | 0.301 | 0.911 | 0.405 | 0.285 | 0.385 | 0.233 | 0.301 | 0.256 |
HM1 | 0.292 | 0.293 | 0.271 | 0.392 | 0.916 | 0.298 | 0.328 | 0.210 | 0.363 | 0.281 |
HM2 | 0.317 | 0.259 | 0.279 | 0.435 | 0.914 | 0.318 | 0.346 | 0.214 | 0.370 | 0.395 |
HM3 | 0.323 | 0.229 | 0.248 | 0.415 | 0.895 | 0.272 | 0.352 | 0.175 | 0.367 | 0.266 |
HM4 | 0.271 | 0.282 | 0.258 | 0.397 | 0.905 | 0.298 | 0.356 | 0.221 | 0.387 | 0.372 |
HM5 | 0.293 | 0.272 | 0.229 | 0.389 | 0.897 | 0.258 | 0.300 | 0.222 | 0.343 | 0.363 |
SP1 | 0.283 | 0.324 | 0.347 | 0.362 | 0.311 | 0.905 | 0.293 | 0.242 | 0.382 | 0.233 |
SP2 | 0.292 | 0.291 | 0.342 | 0.287 | 0.278 | 0.901 | 0.291 | 0.308 | 0.341 | 0.286 |
SP3 | 0.300 | 0.250 | 0.356 | 0.341 | 0.318 | 0.917 | 0.360 | 0.334 | 0.374 | 0.307 |
SP4 | 0.243 | 0.285 | 0.377 | 0.278 | 0.249 | 0.901 | 0.289 | 0.304 | 0.393 | 0.254 |
TAI1 | 0.213 | 0.264 | 0.367 | 0.371 | 0.316 | 0.342 | 0.918 | 0.281 | 0.395 | 0.317 |
TAI2 | 0.269 | 0.285 | 0.345 | 0.422 | 0.382 | 0.333 | 0.914 | 0.246 | 0.406 | 0.379 |
TAI3 | 0.248 | 0.264 | 0.319 | 0.363 | 0.318 | 0.293 | 0.907 | 0.212 | 0.340 | 0.305 |
TAI4 | 0.236 | 0.294 | 0.390 | 0.407 | 0.341 | 0.282 | 0.926 | 0.299 | 0.412 | 0.337 |
PI1 | 0.152 | 0.277 | 0.262 | 0.274 | 0.237 | 0.306 | 0.250 | 0.904 | 0.407 | 0.229 |
PI2 | 0.161 | 0.221 | 0.241 | 0.244 | 0.209 | 0.306 | 0.256 | 0.925 | 0.386 | 0.245 |
PI3 | 0.156 | 0.158 | 0.212 | 0.216 | 0.187 | 0.247 | 0.239 | 0.900 | 0.355 | 0.201 |
PI4 | 0.147 | 0.217 | 0.277 | 0.257 | 0.207 | 0.333 | 0.293 | 0.925 | 0.404 | 0.243 |
OPT1 | 0.219 | 0.309 | 0.313 | 0.307 | 0.343 | 0.349 | 0.379 | 0.441 | 0.924 | 0.166 |
OPT 2 | 0.259 | 0.358 | 0.279 | 0.337 | 0.358 | 0.420 | 0.387 | 0.381 | 0.910 | 0.236 |
OPT 2 | 0.225 | 0.270 | 0.285 | 0.312 | 0.372 | 0.355 | 0.388 | 0.356 | 0.906 | 0.210 |
OPT 2 | 0.283 | 0.305 | 0.341 | 0.334 | 0.410 | 0.382 | 0.404 | 0.369 | 0.915 | 0.254 |
INN1 | 0.341 | 0.285 | 0.219 | 0.268 | 0.346 | 0.294 | 0.341 | 0.232 | 0.241 | 0.912 |
INN2 | 0.325 | 0.236 | 0.175 | 0.248 | 0.359 | 0.276 | 0.328 | 0.259 | 0.190 | 0.931 |
INN3 | 0.336 | 0.257 | 0.145 | 0.234 | 0.310 | 0.248 | 0.341 | 0.196 | 0.217 | 0.908 |
H | Relationship | β | T-Value | p | 2.50% CI | 97.50 CI | VIF | Status |
---|---|---|---|---|---|---|---|---|
H1a | ATT → HM | 0.242 | 4.375 | 0.000 | 0.133 | 0.352 | 1.104 | Yes |
H2b | ATT → SP | 0.161 | 2.721 | 0.007 | 0.042 | 0.278 | 1.170 | Yes |
H2a | ANT → HM | 0.181 | 3.166 | 0.002 | 0.070 | 0.295 | 1.135 | Yes |
H2b | ANT → SP | 0.154 | 2.528 | 0.012 | 0.036 | 0.275 | 1.182 | Yes |
H3a | INT → HM | 0.184 | 3.343 | 0.001 | 0.078 | 0.296 | 1.103 | Yes |
H3b | INT → SP | 0.262 | 4.492 | 0.000 | 0.146 | 0.375 | 1.191 | Yes |
H4a | AUT → SP | 0.152 | 2.280 | 0.023 | 0.022 | 0.283 | 1.300 | Yes |
H4b | AUT → TAI | 0.428 | 7.943 | 0.000 | 0.322 | 0.534 | 1.000 | Yes |
H5a | HM → PI | 0.002 | 0.023 | 0.981 | −0.123 | 0.139 | 1.424 | No |
H5b | SP → PI | 0.145 | 2.218 | 0.027 | 0.019 | 0.276 | 1.381 | Yes |
H5c | TAI → PI | 0.063 | 0.847 | 0.397 | −0.084 | 0.211 | 1.481 | No |
H6a | OPT → PI | 0.351 | 4.894 | 0.000 | 0.208 | 0.494 | 1.504 | Yes |
H6b | OPT × HM → PI | 0.083 | 1.120 | 0.263 | 0.013 | 0.271 | 1.323 | No |
H6c | OPT × SP → PI | −0.022 | 0.306 | 0.760 | −0.067 | 0.209 | 1.543 | No |
H6d | OPT × TAI → PI | 0.123 | 1.591 | 0.112 | −0.164 | 0.118 | 1.380 | No |
H7a | INN → PI | 0.138 | 2.102 | 0.036 | −0.064 | 0.230 | 1.527 | Yes |
H7b | INN × HM → PI | −0.003 | 0.053 | 0.958 | −0.029 | 0.276 | 1.426 | No |
H7c | INN × SP → PI | −0.049 | 0.711 | 0.477 | −0.139 | 0.123 | 1.387 | No |
H7d | INN × TAI → PI | 0.072 | 1.018 | 0.309 | −0.187 | 0.082 | 1.479 | No |
Gen Z (n = 158) | Gen M (n = 144) | ||||||||
---|---|---|---|---|---|---|---|---|---|
H | Path | β | T-Value | p-Value | β | T-Value | p | p (Difference) | Status |
H1a | ATT → HM | 0.290 | 3.966 | 0.000 | 0.194 | 2.326 | 0.020 | 0.386 | No |
H2b | ATT → SP | 0.149 | 1.874 | 0.061 | 0.172 | 1.948 | 0.051 | 0.848 | No |
H2a | ANT → HM | 0.156 | 2.042 | 0.041 | 0.219 | 2.547 | 0.011 | 0.611 | No |
H2a | ANT → SP | 0.262 | 2.983 | 0.003 | 0.082 | 0.943 | 0.346 | 0.133 | No |
H3a | INT → HM | 0.204 | 2.514 | 0.012 | 0.176 | 2.276 | 0.023 | 0.815 | No |
H3b | INT → SP | 0.111 | 1.360 | 0.174 | 0.381 | 4.529 | 0.000 | 0.022 | Significant |
H4a | AUT → SP | 0.184 | 1.888 | 0.059 | 0.164 | 1.753 | 0.080 | 0.899 | No |
H4b | AUT → TAI | 0.403 | 5.310 | 0.000 | 0.472 | 6.027 | 0.000 | 0.517 | No |
H5a | HM → PI | 0.102 | 1.018 | 0.309 | −0.146 | 1.872 | 0.061 | 0.050 | Significant |
H5b | SP → PI | 0.213 | 2.382 | 0.017 | 0.131 | 1.190 | 0.234 | 0.485 | No |
H5c | TAI → PI | −0.015 | 0.137 | 0.891 | 0.180 | 1.541 | 0.123 | 0.212 | No |
H6a | OPT → PI | 0.378 | 3.850 | 0.000 | 0.314 | 2.730 | 0.006 | 0.749 | No |
H6b | OPT × HM → PI | 0.113 | 1.051 | 0.293 | 0.080 | 0.786 | 0.432 | 0.782 | No |
H6c | OPT × SP → PI | −0.086 | 0.763 | 0.446 | −0.020 | 0.181 | 0.856 | 0.806 | No |
H6d | OPT × TAI → PI | 0.079 | 0.680 | 0.496 | 0.186 | 1.493 | 0.136 | 0.668 | No |
H7a | INN → PI | 0.142 | 1.492 | 0.136 | 0.186 | 1.987 | 0.047 | 0.515 | No |
H7b | INN × HM → PI | 0.050 | 0.571 | 0.568 | 0.011 | 0.125 | 0.900 | 0.734 | No |
H7c | INN × SP → PI | −0.069 | 0.613 | 0.540 | −0.021 | 0.120 | 0.905 | 0.707 | No |
H7d | INN × TAI → PI | 0.194 | 2.212 | 0.027 | −0.099 | 0.705 | 0.481 | 0.076 | No |
University Students (n = 106) | workers (n = 196) | ||||||||
---|---|---|---|---|---|---|---|---|---|
H | Relationship | β | T-Value | p | β | T-Value | p | p (Difference) | Status |
H1a | ATT → HM | 0.286 | 3.245 | 0.001 | 0.217 | 3.096 | 0.002 | 0.539 | No |
H2b | ATT → SP | 0.107 | 1.202 | 0.230 | 0.193 | 2.679 | 0.007 | 0.450 | No |
H2a | ANT → HM | 0.182 | 1.927 | 0.054 | 0.205 | 2.929 | 0.003 | 0.831 | No |
H2a | ANT → SP | 0.398 | 3.724 | 0.000 | 0.074 | 1.022 | 0.307 | 0.014 | Significant |
H3a | INT → HM | 0.114 | 1.259 | 0.208 | 0.219 | 3.275 | 0.001 | 0.356 | No |
H3b | INT → SP | 0.067 | 0.681 | 0.496 | 0.323 | 4.385 | 0.000 | 0.039 | Significant |
H4a | AUT → SP | 0.162 | 1.649 | 0.099 | 0.164 | 1.889 | 0.059 | 0.980 | No |
H4b | AUT → TAI | 0.432 | 4.813 | 0.000 | 0.430 | 6.454 | 0.000 | 0.984 | No |
H5a | HM → PI | 0.112 | 0.969 | 0.332 | −0.078 | 1.044 | 0.297 | 0.167 | No |
H5b | SP → PI | 0.226 | 2.007 | 0.045 | 0.092 | 1.098 | 0.272 | 0.332 | No |
H5c | TAI → PI | −0.124 | 1.031 | 0.303 | 0.188 | 2.075 | 0.038 | 0.046 | Significant |
H6a | OPT → PI | 0.392 | 3.305 | 0.001 | 0.307 | 3.275 | 0.001 | 0.569 | No |
H6b | OPT × HM → PI | 0.175 | 1.633 | 0.103 | 0.171 | 2.151 | 0.032 | 0.973 | No |
H6c | OPT × SP → PI | 0.203 | 1.609 | 0.108 | 0.036 | 0.410 | 0.682 | 0.275 | No |
H6d | OPT × TAI → PI | −0.155 | 1.243 | 0.214 | 0.006 | 0.068 | 0.946 | 0.285 | No |
H7a | INN → PI | 0.029 | 0.224 | 0.823 | 0.186 | 1.824 | 0.068 | 0.339 | No |
H7b | INN × HM → PI | −0.083 | 0.632 | 0.528 | 0.075 | 1.046 | 0.296 | 0.273 | No |
H7c | INN × SP → PI | 0.049 | 0.374 | 0.708 | −0.035 | 0.404 | 0.686 | 0.557 | No |
H7d | INN × TAI → PI | 0.198 | 1.870 | 0.062 | −0.087 | 0.887 | 0.375 | 0.048 | Significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Feng, Y.; Li, W.; Huang, Q.; Fan, Z. How AI Brand Endorsers Influence Generation MZ’s Consumer Behavior in Metaverse Marketing Scenarios. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 82. https://doi.org/10.3390/jtaer20020082
Xu J, Feng Y, Li W, Huang Q, Fan Z. How AI Brand Endorsers Influence Generation MZ’s Consumer Behavior in Metaverse Marketing Scenarios. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(2):82. https://doi.org/10.3390/jtaer20020082
Chicago/Turabian StyleXu, Junping, Yuxi Feng, Wei Li, Qianghong Huang, and Zhizhong Fan. 2025. "How AI Brand Endorsers Influence Generation MZ’s Consumer Behavior in Metaverse Marketing Scenarios" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 2: 82. https://doi.org/10.3390/jtaer20020082
APA StyleXu, J., Feng, Y., Li, W., Huang, Q., & Fan, Z. (2025). How AI Brand Endorsers Influence Generation MZ’s Consumer Behavior in Metaverse Marketing Scenarios. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 82. https://doi.org/10.3390/jtaer20020082