Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer
Abstract
:1. Introduction
2. Punica granatum: History and Chemical Composition
3. Materials and Methods
4. Results and Discussion
5. Current Limitations and Future Perspectives of Punica granatum in Breast Cancer Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
COX | Cyclooxygenase |
CSCs | Breast cancer stem cells |
DMBA | 7,12-dimethylbenz(a)anthracene |
DNA | Deoxyribonucleic acid |
E1 | Estrone |
E2 | Estradiol |
ER | Estrogen receptor |
ER + | Positive for estrogen receptors |
ER - | Negative for estrogen receptors |
GOLPH3 | Golgi phosphoprotein 3 |
HER2 | Human epidermal growth factor receptor 2 |
HMLER | Human mammary epithelial cells |
HSP90 | Heat shock protein 90 |
hTERT | Human telomerase reverse transcriptase |
IGF-1R | Insulin-like growth factor 1 receptor |
miRNA | Micro Ribonucleic acid |
MMP | Matrix metalloproteinase |
NF-kB | Nuclear factor kB |
PAINS | Pan assay interference compounds |
PKC | Protein kinase C |
PR | Progesterone receptor |
RNA | Ribonucleic acid |
SDF1α | Stromal cell-derived factor 1 α |
SERM | Selective estrogen receptor modulator |
TGF-β | Transforming growth factor beta |
VEGF | Vascular endothelial growth factor |
References
- Bassiri-Jahromi, S. Punica granatum (Pomegranate) activity in health promotion and cancer prevention. Oncol. Rev. 2018, 12, 345. [Google Scholar] [CrossRef]
- Sharma, P.; McClees, S.F.; Afaq, F. Pomegranate for Prevention and Treatment of Cancer: An Update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef] [Green Version]
- Pogribny, I.P.; Rusyn, I. Environmental toxicants, epigenetics, and cancer. Single Mol. Single Cell Seq. 2012, 754, 215–232. [Google Scholar] [CrossRef] [Green Version]
- Minamoto, T.; Mai, M.; Ronai, Z. Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis 1999, 20, 519–527. [Google Scholar] [CrossRef]
- Khan, N.; Afaq, F.; Mukhtar, H. Lifestyle as risk factor for cancer: Evidence from human studies. Cancer Lett. 2010, 293, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Xu, L.; Shi, W.; Zeng, F.; Zhuo, R.; Hao, X.; Fan, P. Trends of female and male breast cancer incidence at the global, regional, and national levels, 1990–2017. Breast Cancer Res. Treat. 2020, 180, 481–490. [Google Scholar] [CrossRef]
- Vishwakarma, G.; Ndetan, H.; Das, D.N.; Gupta, G.; Suryavanshi, M.; Mehta, A.; Singh, K.P. Reproductive factors and breast cancer risk: A meta-analysis of case–control studies in Indian women. South Asian J. Cancer 2019, 8, 080–084. [Google Scholar] [CrossRef]
- Eliassen, A.H.; Hankinson, S.E. Endogenous hormone levels and risk of breast, endometrial and ovarian cancers: Prospective studies. Single Mol. Single Cell Seq. 2008, 630, 148–165. [Google Scholar]
- Key, T.J.; Schatzkin, A.; Willett, W.C.; Allen, N.E.; Spencer, E.A.; Travis, R.C. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004, 7, 187–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnard, R.J. Prevention of Cancer Through Lifestyle Changes. Evid. Based Complement. Altern. Med. 2004, 1, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Laudisio, D.; Barrea, L.; Muscogiuri, G.; Annunziata, G.; Colao, A.; Savastano, S. Breast cancer prevention in premenopausal women: Role of the Mediterranean diet and its components. Nutr. Res. Rev. 2019, 33, 19–32. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years⊥. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-Y.; Cai, Y.-Z.; Zhang, Y. Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutr. Cancer 2009, 62, 1–20. [Google Scholar] [CrossRef]
- Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Afaq, F.; Mukhtar, H. Cancer Chemoprevention Through Dietary Antioxidants: Progress and Promise. Antioxid. Redox Signal. 2008, 10, 475–510. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.S.; Zhang, Y.; Seeram, N.P.; Heber, D.; Chen, S. Pomegranate Ellagitannin–Derived Compounds Exhibit Antiproliferative and Antiaromatase Activity in Breast Cancer Cells In vitro. Cancer Prev. Res. 2010, 3, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-S.; Bai, M.-H.; Zhang, T.; Li, G.-D.; Liu, M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-?/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int. J. Oncol. 2015, 46, 1730–1738. [Google Scholar] [CrossRef]
- Costantini, S.; Rusolo, F.; De Vito, V.; Moccia, S.; Picariello, G.; Capone, F.; Guerriero, E.; Castello, G.; Volpe, M.G. Potential Anti-Inflammatory Effects of the Hydrophilic Fraction of Pomegranate (Punica granatum L.) Seed Oil on Breast Cancer Cell Lines. Molecules 2014, 19, 8644–8660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikmen, M.; Ozturk, N.; Ozturk, Y. The Antioxidant Potency of Punica granatum L. Fruit Peel Reduces Cell Proliferation and Induces Apoptosis on Breast Cancer. J. Med. Food 2011, 14, 1638–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossmann, M.E.; Mizuno, N.K.; Schuster, T.; Cleary, M.P. Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. Int. J. Oncol. 2010, 36, 421–426. [Google Scholar]
- Shirode, A.B.; Kovvuru, P.; Chittur, S.V.; Henning, S.M.; Heber, D.; Reliene, R. Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks. Mol. Carcinog. 2014, 53, 458–470. [Google Scholar] [CrossRef]
- Sreeja, S.; Kumar, T.R.S.; Lakshmi, B.S.; Sreeja, S. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation. J. Nutr. Biochem. 2012, 23, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Bishayee, A. Mechanism of Breast Cancer Preventive Action of Pomegranate: Disruption of Estrogen Receptor and Wnt/β-Catenin Signaling Pathways. Molecules 2015, 20, 22315–22328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mars, M. Pomegranate plant material: Genetic resources and breeding, a review. Options Mediterr. Ser. A 2000, 42, 55–62. [Google Scholar]
- Naqvi, S.; Khan, M.; Vohora, S. Anti-bacterial, anti-fungal and anthelmintic investigations on Indian medicinal plants. Fitoterapia 1991, 62, 221–228. [Google Scholar]
- Prakash, C.V.S.; Prakash, I. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel-a re-view. Int. J. Res. Chem. Environ. Technol. 2011, 1, 1–18. [Google Scholar]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of Antioxidant Potency of Commonly Consumed Polyphenol-Rich Beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef]
- Mertens-Talcott, S.U.; Jilma-Stohlawetz, P.; Rios, J.; Hingorani, L.; Derendorf, H. Absorption, Metabolism, and Antioxidant Effects of Pomegranate (Punica granatumL.) Polyphenols after Ingestion of a Standardized Extract in Healthy Human Volunteers. J. Agric. Food Chem. 2006, 54, 8956–8961. [Google Scholar] [CrossRef]
- Ben Nasr, C.; Ayed, N.; Metche, M. Quantitative determination of the polyphenolic content of pomegranate peel. Eur. Food Res. Technol. 1996, 203, 374–378. [Google Scholar] [CrossRef]
- Noda, Y.; Kaneyuki, T.; Mori, A.; Packer, L. Antioxidant Activities of Pomegranate Fruit Extract and Its Anthocyanidins: Delphinidin, Cyanidin, and Pelargonidin. J. Agric. Food Chem. 2002, 50, 166–171. [Google Scholar] [CrossRef]
- Van Elswijk, D.; Schobel, U.P.; Lansky, E.P.; Irth, H.; Van Der Greef, J. Rapid dereplication of estrogenic compounds in pomegranate (Punica granatum) using on-line biochemical detection coupled to mass spectrometry. Phytochemistry 2004, 65, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Fallarero, A.; Peña, B.R.; Medina, M.E.; Gra, B.; Rivera, F.; Gutierrez, Y.; Vuorela, P.M. Studies on the toxicity of Punica granatum L. (Punicaceae) whole fruit extracts. J. Ethnopharmacol. 2003, 89, 295–300. [Google Scholar] [CrossRef]
- Murthy, K.C.; Reddy, V.K.; Veigas, J.M.; Murthy, U.D. Study on Wound Healing Activity of Punica granatum Peel. J. Med. Food 2004, 7, 256–259. [Google Scholar] [CrossRef]
- Ozbay, T.; Nahta, R. Delphinidin Inhibits HER2 and Erk1/2 Signaling and Suppresses Growth of HER2-Overexpressing and Triple Negative Breast Cancer Cell Lines. Breast Cancer Basic Clin. Res. 2011, 5, 143–154. [Google Scholar] [CrossRef]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Waheed, S.; Siddique, N.; Rahman, A.; Zaidi, J.H.; Ahmad, S. INAA for dietary assessment of essential and other trace elements in fourteen fruits harvested and consumed in Pakistan. J. Radioanal. Nucl. Chem. 2004, 260, 523–531. [Google Scholar] [CrossRef]
- Afaq, F.; Saleem, M.; Krueger, C.G.; Reed, J.D.; Mukhtar, H. Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-?B pathways and inhibits skin tumorigenesis in CD-1 mice. Int. J. Cancer 2004, 113, 423–433. [Google Scholar] [CrossRef]
- Elfalleh, W. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J. Med. Plants Res. 2012, 6, 4724–4730. [Google Scholar] [CrossRef]
- Kohno, H.; Suzuki, R.; Yasui, Y.; Hosokawa, M.; Miyashita, K.; Tanaka, T. Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci. 2004, 95, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Zand, R.S.R.; Jenkins, D.J.; Diamandis, E.P. Steroid hormone activity of flavonoids and related compounds. Breast Cancer Res. Treat. 2000, 62, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, Y.; Zhang, Y.; Liu, J.; Yu, J. Changes in bioactive compounds and antioxidant activities in pomegranate leaves. Sci. Hortic. 2010, 123, 543–546. [Google Scholar] [CrossRef]
- Munde, S.; Patil, V.; Chavan, S. Chemical composition of pomegranate (Punica granatum Linn.) leaves sample during different stages of crop. Food Farm Agric. 1981, 13, 185–190. [Google Scholar]
- Huang, T.H.W.; Yang, Q.; Harada, M.; Li, G.Q.; Yamahara, J.; Roufogalis, B.D.; Li, Y. Pomegranate Flower Extract Diminishes Cardiac Fibrosis in Zucker Diabetic Fatty Rats. J. Cardiovasc. Pharmacol. 2005, 46, 856–862. [Google Scholar] [CrossRef]
- Vini, R.; Sreeja, S. Punica granatumand its therapeutic implications on breast carcinogenesis: A review. BioFactors 2015, 41, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, S.; Sithul, H.; Muraleedharan, P.; Azeez, J.M.; Sreeharshan, S. Pomegranate Fruit as a Rich Source of Biologically Active Compounds. BioMed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Higgins, M.J.; Baselga, J. Targeted therapies for breast cancer. J. Clin. Investig. 2011, 121, 3797–3803. [Google Scholar] [CrossRef]
- Sturgeon, S.R.; Ronnenberg, A.G. Pomegranate and breast cancer: Possible mechanisms of prevention. Nutr. Rev. 2010, 68, 122–128. [Google Scholar] [CrossRef]
- Banerjee, S.; Kambhampati, S.; Haque, I.; Banerjee, S.K. Pomegranate sensitizes Tamoxifen action in ER-α positive breast cancer cells. J. Cell Commun. Signal. 2011, 5, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Stossi, F.; Barnett, D.H.; Frasor, J.; Komm, B.; Lyttle, C.R.; Katzenellenbogen, B.S. Transcriptional Profiling of Estrogen-Regulated Gene Expression via Estrogen Receptor (ER) α or ERβ in Human Osteosarcoma Cells: Distinct and Common Target Genes for These Receptors. Endocrinology 2004, 145, 3473–3486. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.E.; Feigelson, H.S. Hormonal carcinogenesis. Carcinogenesis 2000, 21, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Jordan, V.C. Questions about Tamoxifen and the Future Use of Antiestrogens. Oncology 1998, 3, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Swaby, R.F.; Sharma, C.G.N.; Jordan, V.C. SERMs for the treatment and prevention of breast cancer. Rev. Endocr. Metab. Disord. 2007, 8, 229–239. [Google Scholar] [CrossRef]
- Hewitt, S.C.; Harrell, J.C.; Korach, K.S. LESSONS IN ESTROGEN BIOLOGY FROM KNOCKOUT AND TRANSGENIC ANIMALS. Annu. Rev. Physiol. 2005, 67, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Cvoro, A.; Tzagarakis-Foster, C.; Tatomer, D.; Paruthiyil, S.; Fox, M.S.; Leitman, D.C. Distinct Roles of Unliganded and Liganded Estrogen Receptors in Transcriptional Repression. Mol. Cell 2006, 21, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Mandal, S.C.; Banerjee, S. Compounds of Natural Origin and Acupuncture for the Treatment of Diseases Caused by Estrogen Deficiency. J. Acupunct. Meridian Stud. 2016, 9, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pons, D.G.; Oliver, J.O.; Roca, P.; Blanquer-Rossello, M.M.; Nadal-Serrano, M.; Sastre-Serra, J. Genistein Modulates Proliferation and Mitochondrial Functionality in Breast Cancer Cells Depending on ERalpha/ERbeta Ratio. J. Cell. Biochem. 2014, 115, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Sustaita, B.; Estrada-Camarena, E.; González-Trujano, M.E.; López-Rubalcava, C. Estrogen receptors-β and serotonin mediate the antidepressant-like effect of an aqueous extract of pomegranate in ovariectomized rats. Neurochem. Int. 2021, 142, 104904. [Google Scholar] [CrossRef]
- Mori-Okamoto, J.; Otawara-Hamamoto, Y.; Yamato, H.; Yoshimura, H. Pomegranate extract improves a depressive state and bone properties in menopausal syndrome model ovariectomized mice. J. Ethnopharmacol. 2004, 92, 93–101. [Google Scholar] [CrossRef]
- Speroff, L.; Fritz, M.A. Clinical Gynecologic Endocrinology and Infertility, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 573–621. [Google Scholar]
- Kim, N.D.; Mehta, R.; Yu, W.; Neeman, I.; Livney, T.; Amichay, A.; Poirier, D.; Nicholls, P.; Kirby, A.; Jiang, W.; et al. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res. Treat. 2002, 71, 203–217. [Google Scholar] [CrossRef]
- Bishayee, A.; Mandal, A.; Bhattacharyya, P.; Bhatia, D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr. Cancer 2015, 68, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Sharaf, A.; Nigm, S.A.R. The oestrogenic activity of pomegranate seed oil. J. Endocrinol. 1964, 29, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Papoutsi, Z.; Kassi, E.; Tsiapara, A.; Fokialakis, N.; Chrousos, G.P.; Moutsatsou, P. Evaluation of Estrogenic/Antiestrogenic Activity of Ellagic Acid via the Estrogen Receptor Subtypes ERα and ERβ. J. Agric. Food Chem. 2005, 53, 7715–7720. [Google Scholar] [CrossRef] [PubMed]
- Strati, A.; Papoutsi, Z.; Lianidou, E.; Moutsatsou, P. Effect of ellagic acid on the expression of human telomerase reverse transcriptase (hTERT) α+β+ transcript in estrogen receptor-positive MCF-7 breast cancer cells. Clin. Biochem. 2009, 42, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.Y.; Lansky, E.P.; Neeman, I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J. Ethnopharmacol. 1999, 66, 11–17. [Google Scholar] [CrossRef]
- Soslow, R.A.; Dannenberg, A.J.; Rush, D.; Woerner, B.M.; Khan, K.N.; Masferrer, J.; Koki, A.T. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 2000, 89, 2637–2645. [Google Scholar] [CrossRef]
- Wang, L.; Martins-Green, M. The potential of pomegranate and its components for prevention and treatment of breast cancer. Agro Food Ind. Hi-Tech. 2013, 24, 58–61. [Google Scholar]
- Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K.A.; Haqqi, T.M. Bioavailable constituents/metabolites of pomegranate (Punica granatum L) preferentially inhibit COX2 activity ex vivo and IL-1beta-induced PGE2 production in human chondrocytes in vitro. J. Inflamm. 2008, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Mandal, A.; Bhatia, D.; Bishayee, A. Anti-Inflammatory Mechanism Involved in Pomegranate-Mediated Prevention of Breast Cancer: The Role of NF-κB and Nrf2 Signaling Pathways. Nutrition 2017, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Ciolino; Khan, M.; Dai, Z.; Nair, V. Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncol. Rep. 2010, 24, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Duan, Y.; Ma, F.; Lou, L. Punicalagin inhibits the viability, migration, invasion, and EMT by regulating GOLPH3 in breast cancer cells. J. Recept. Signal Transduct. 2020, 40, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.N.; Gorin, M.A.; Rosenthal, D.; Pan, Q.; Bao, L.W.; Wu, Z.F.; Newman, R.A.; Pawlus, A.D.; Yang, P.; Lansky, E.P.; et al. Pomegranate Fruit Extract Impairs Invasion and Motility in Human Breast Cancer. Integr. Cancer Ther. 2009, 8, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Lansky, E.P. Breast cancer chemopreventive properties of pomegranate (Punica granatum) fruit extracts in a mouse mammary organ culture. Eur. J. Cancer Prev. 2004, 13, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.; Wang, L.; Penichet, M.; Martins-Green, M. Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res. Treat. 2012, 136, 647–658. [Google Scholar] [CrossRef]
- Toi, M.; Bando, H.; Ramachandran, C.; Melnick, S.J.; Imai, A.; Fife, R.S.; Carr, R.E.; Oikawa, T.; Lansky, E.P. Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo. Angiogenesis 2003, 6, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Q.; Qiang, S.-Y.; Yang, W.-B.; Jiang, J.-T.; Ji, Z.-Z. Expression of survivin in different stages of carcinogenesis and progression of breast cancer. Ai zheng Aizheng Chin. J. Cancer 2004, 23, 697–700. [Google Scholar]
- Jeune, M.L.; Kumi-Diaka, J.; Brown, J. Anticancer Activities of Pomegranate Extracts and Genistein in Human Breast Cancer Cells. J. Med. Food 2005, 8, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Tanner, A.E.; Saker, K.E.; Ju, Y.; Lee, Y.W.; O’Keefe, S.; Robertson, J.; Tanko, J.M. Cell proliferation of feline and human breast cancer cell types is inhibited by pomegranate juice. J. Anim. Physiol. Anim. Nutr. 2008, 92, 221–222. [Google Scholar] [CrossRef]
- Scambia, G.; Ranelletti, F.O.; Panici, P.B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M.; et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 1994, 34, 459–464. [Google Scholar] [CrossRef]
- Kitagawa, S.; Nabekura, T.; Takahashi, T.; Nakamura, Y.; Sakamoto, H.; Tano, H.; Hirai, M.; Tsukahara, G. Structure–Activity Relationships of the Inhibitory Effects of Flavonoids on P-Glycoprotein-Mediated Transport in KB-C2 Cells. Biol. Pharm. Bull. 2005, 28, 2274–2278. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Henning, S.M.; Zhang, Y.; Suchard, M.; Li, Z.; Heber, D. Pomegranate Juice Ellagitannin Metabolites Are Present in Human Plasma and Some Persist in Urine for Up to 48 Hours. J. Nutr. 2006, 136, 2481–2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther. 2010, 128, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Reliene, R.; Shirode, A.B.; Coon, J.K.; Nallanthighal, S.; Bharali, D.J.; Mousa, S.A. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int. J. Nanomed. 2015, 10, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Ronnenberg, A.; Puleo, E.; Chatterton, R.T., Jr.; Dorgan, J.F.; Seeram, N.P.; Sturgeon, S.R. Effects of Pomegranate Juice on Hormonal Biomarkers of Breast Cancer Risk. Nutr. Cancer 2015, 67, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Warren, P.M.; Ramos, E.N.R.H.; Halpert, S. Pomegranate: Ancient Roots to Modern Medicine, 4th ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 157–167. [Google Scholar]
- Wang, L.-M.; Xie, K.-P.; Huo, H.-N.; Shang, F.; Zou, W.; Xie, M.-J. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ER? in human breast cancer MCF-7 cells. Asian Pac. J. Cancer Prev. 2012, 13, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Talcott, S.; Safe, S.; Mertens-Talcott, S.U. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: Potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res. Treat. 2012, 136, 21–34. [Google Scholar] [CrossRef]
- Nallanthighal, S.; Elmaliki, K.M.; Reliene, R. Pomegranate Extract Alters Breast Cancer Stem Cell Properties in Association with Inhibition of Epithelial-to-Mesenchymal Transition. Nutr. Cancer 2017, 69, 1088–1098. [Google Scholar] [CrossRef]
Author, Year, Reference | Type of Study | Pomegranate Extract/Pomegranate Polyphenol(s) | Cells Type/Subjects | Anti-Cancer Activity | Results |
---|---|---|---|---|---|
Kim et al., 2002 [62] | In vitro | Aqueous pericarp extract, fermented juice and cold-pressed seed oil, all rich in polyphenols | MCF-7 cells MCF-10A cells MB-MDA-231cells | Estrogenic activity Anti-proliferative Anti-aromatase |
|
Toi et al., 2003 [77] | In vitro | Polyphenols from pomegranate fermented juice and seed oil | MCF-7 cells MDA-MB-231 cells MCF-10A cells | Anti-angiogenic effects |
|
Mehta et al., 2004 [75] | In vitro | Polyphenols from pomegranate fermented juice and seed oil | Mouse mammary organ culture | Chemoprevention |
|
Jeune et al., 2005 [79] | In vitro | Pomegranate extracts and genistein | MCF-7 cells | Anti-proliferative effects Pro-apoptotic effects |
|
Tanner et al., 2008 [80] | In vitro | Polyphenols from pomegranate juice | MDA-MB-231 cells | Anti-proliferative effects |
|
Khan et al., 2009 [74] | In vitro | Aqueous pomegranate fruit extracts | Aggressive breast cancer cell lines | Anti-metastatic effects |
|
Strati et al., 2009 [66] | In vitro | Ellagic acid | MCF-7 cells | Chemopreventive effects |
|
Grossmann et al., 2010 [21] | In vitro | Punicic acid | MDA-MB-231cells MDA-ERα7 cells | Anti-proliferative effects Pro-apoptotic effects |
|
Adams et al., 2010 [17] | In vitro | Pomegranate Ellagitannins (ellagic acid, gallagic acid, urolithins A, urolithins B) | MCF-7 cells | Anti-aromatase activity Anti-proliferative effects |
|
Dai et al., 2010 [72] | In vitro | Standardized extract of pomegranate | WA4 cells derived from mouse MMTV-Wnt-1 mammary tumors | Anti-proliferative effects Cytotoxic effects Pro-apoptotic effects |
|
Dikmen et al., 2011 [20] | In vitro | Methanolic pomegranate fruit peel extract | MCF-7 cells | Anti-proliferative effects Pro-apoptotic effects Antioxidant effects |
|
Banerjee et al., 2011 [50] | In vitro | Pomegranate fruit extracts | Tamoxifen resistant MCF-7 cells | Sensitizes the effects of tamoxifen |
|
Wang et al., 2012 [88] | In vitro | Luteolin | IGF-1-stimulated MCF-7 cells | Anti-proliferative effects Pro-apoptotic effects |
|
Sreeja et al., 2012 [23] | In vitro | Methanol extract of pericarp of pomegranate | MCF-7 cells MDA-MB-231 cells | Anti-estrogenic effects |
|
Barnejee et al., 2012 [89] | In vitro | Pomegranate extract polyphenols | MCF-7 cells BT-474 cells MDA-MB-231 cells MCF-10F cells MCF-12F cells | Anti-inflammatory effects Cytotoxic effects |
|
Rocha et al., 2012 [76] | In vitro | Pomegranate juice polyphenols (luteolin, ellagic acid, punicic acid) | MCF-7 cells MDB-MB-231 cells MCF10A cells | Increase cell adhesion Anti-metastatic effects Anti-inflammatory effects |
|
Shirode et al., 2013 [22] | In vitro | Pomegranate extract | MCF-7 cells | Anti-proliferative effects Pro-apoptotic effects Antioxidant effects | Pomegranate extract:
|
Pons et al., 2013 [58] | In vitro | Genistein | T47D cells (low ERα/ERβ ratio) MDA-MB-231 cells (ER-) MCF-7 cells (high ERα/ERβ ratio) | Anti-proliferative effects Pro-apoptotic effects |
|
Costantini et al., 2014 [19] | In vitro | 80% aqueous methanol extract containing conjugated linolenic acids (punicic acid) | MCF-7 cells MDA-MB-231 cells | Anti-inflammatory effects Antioxidant effects Cytotoxic effects |
|
Kapoor et al., 2015 [86] | Randomized placebo- controlled clinical trial | Pomegranate juice | 38 healthy postmenopausal women at risk for breast cancer development | Induces various changes on hormonal biomarkers of breast cancer risk |
|
Shirode et al., 2015 [85] | In vitro | Nanoparticles loaded with pomegranate extract | MCF-7 cells | Cell growth inhibition |
|
Chen et al., 2015 [18] | In vitro | Ellagic acid | MCF-7 cells | Anti-proliferative effects Pro-apoptotic effects |
|
Bishayee et al., 2015 [63] | In vivo | Pomegranate emulsion | Rat mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) | Chemopreventive effects |
|
Mandal et al., 2015 [24] | In vitro | Pomegranate emulsion | Rat mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) | Anti-proliferative effects Pro-apoptotic effects |
|
Mandal et al., 2017 [71] | In vivo | Pomegranate emulsion | Rat mammary tumors | Anti-inflammatory effects Anti-proliferative effects Pro-apoptotic effects |
|
Nallanthighal et al., 2017 [90] | In vitro | Pomegranate extract | Breast cancer stem cells (CSCs): neoplastic mammary epithelial (HMLER) and Hs578T | Chemopreventive effects |
|
Pan et al., 2020 [73] | In vitro | Punicalagin | MCF-7 cells MDB-MB-231 cells | Pro-apoptotic effects Anti-metastatic effects |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moga, M.A.; Dimienescu, O.G.; Bălan, A.; Dima, L.; Toma, S.I.; Bîgiu, N.F.; Blidaru, A. Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer. Molecules 2021, 26, 1054. https://doi.org/10.3390/molecules26041054
Moga MA, Dimienescu OG, Bălan A, Dima L, Toma SI, Bîgiu NF, Blidaru A. Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer. Molecules. 2021; 26(4):1054. https://doi.org/10.3390/molecules26041054
Chicago/Turabian StyleMoga, Marius Alexandru, Oana Gabriela Dimienescu, Andreea Bălan, Lorena Dima, Sebastian Ionut Toma, Nicușor Florin Bîgiu, and Alexandru Blidaru. 2021. "Pharmacological and Therapeutic Properties of Punica granatum Phytochemicals: Possible Roles in Breast Cancer" Molecules 26, no. 4: 1054. https://doi.org/10.3390/molecules26041054