Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Soil and Water Assessment Tool and the Procedure for Parameter Selection
2.2. Data Sources and Model Setup
2.3. Sensitivity Analysis, Parameter Calibration and Model Validation
2.4. Land potential Evaluation and Estimation of Energy Supply Potential by Napier Grass Biomass in Thailand
3. Results and Discussion
3.1. Sensitivity Analysis and Parameter Calibration
3.2. Model and Parameter Validation
3.3. Application of Soil and Water Assessment Tool in the land Potential Evaluation of Napier Grass Plantations in Thailand
3.4. Potential of Power Supply Generated by Napier Grass in Thailand
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bova, S.; Rosenthal, Y.; Liu, Z.; Godad, S.P.; Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 2021, 589, 548–553. [Google Scholar] [CrossRef]
- Limjeerajarus, N.; Charoen-Amornkitt, P. Effect of different flow field designs and number of channels on performance of a small PEFC. Int. J. Hydrog. Energy 2015, 40, 7144–7158. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.H.; Jamil, M.A.; Rasheed, T.; Sher, F. An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel. Sustainability 2020, 12, 9975. [Google Scholar] [CrossRef]
- Razzaq, L.; Farooq, M.; Mujtaba, M.A.; Sher, F.; Farhan, M.; Hassan, M.T.; Soudagar, M.E.M.; Atabani, A.E.; Kalam, M.A.; Imran, M. Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment. Sustainability 2020, 12, 5186. [Google Scholar] [CrossRef]
- Charoen-Amornkitt, P.; Suzuki, T.; Tsushima, S. Ohmic resistance and constant phase element effects on cyclic voltammograms using a combined model of mass transport and equivalent circuits. Electrochim. Acta 2017, 258, 433–441. [Google Scholar] [CrossRef]
- Charoen-Amornkitt, P.; Suzuki, T.; Tsushima, S. Determination of Constant Phase Element Parameters under Cyclic Voltam-metry Conditions Using a Semi-theoretical Equation. Electrochemistry 2019, 87, 204–213. [Google Scholar] [CrossRef]
- Charoen-Amornkitt, P.; Suzuki, T.; Tsushima, S. Effects of Voltage-Dependence of the Constant Phase Element and Ohmic Parameters in the Modeling and Simulation of Cyclic Voltammograms. J. Electrochem. Soc. 2020, 167, 166506. [Google Scholar] [CrossRef]
- EGAT Overview. Available online: https://www.egat.co.th/en/images/publication/EGAT-Overview-2020/EGAT-Overview-2020.pdf (accessed on 10 July 2020).
- Napier Grass. Available online: http://weben.dede.go.th/webmax/content/napier-grass (accessed on 5 July 2020).
- Kiyothong, K. Handbook of Napier Grass CV. Pakchong 1 Plantation; Mittrapap Printing Ltd.: Nakhonratchasima, Thailand, 2011. [Google Scholar]
- Nair, S.S.; Kang, S.; Zhang, X.; Miguez, F.E.; Izaurralde, R.C.; Post, W.M.; Dietze, M.C.; Lynd, L.R.; Wullschleger, S.D. Bio-energy crop models: Descriptions, data requirements, and future challenges. Glob. Chang. Biol. Bioenergy 2012, 4, 620–633. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Dumont, B.; Leemans, V.; Mansouri, M.; Bodson, B.; Destain, J.-P.; Destain, M.-F. Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environ. Model. Softw. 2014, 52, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT Ungauged: Hydrological Budgetand Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, J.C.; Storm, B.; Clausen, T. Système Hydrologique Europeén (SHE): Review and perspectives after 30 years de-velopment in distributed physically-based hydrological modelling. Hydrol. Res. 2010, 41, 355–377. [Google Scholar] [CrossRef]
- White, K.L.; Chaubey, I. Sensitivity Analysis, Calibration, and Validations for A Multisite and Multivariable Swat Model. J. Am. Water Resour. Assoc. 2005, 41, 1077–1089. [Google Scholar] [CrossRef]
- Paruggia, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. J. Am. Stat. Assoc. 2006, 101, 398–399. [Google Scholar] [CrossRef]
- Mohammed, I.Y.; Abakr, Y.A.; Kazi, F.K.; Yusup, S.; Alshareef, I.; Chin, S.A. Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion. Energies 2015, 8, 3403–3417. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Su, X. Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrol. Res. 2019, 50, 861–877. [Google Scholar] [CrossRef] [Green Version]
- Khanal, S.; Parajuli, P.B. Sensitivity Analysis and Evaluation of Forest Biomass Production Potential Using SWAT Model. J. Sustain. Bioenergy Syst. 2014, 4, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Sane, M.L.; Sambou, S.; Leye, I.; Ndione, D.M.; Diatta, S.; Ndiaye, I.; Badji, M.L.; Kane, S. Calibration and Validation of the SWAT Model on the Watershed of Bafing River, Main Upstream Tributary of Senegal River: Checking for the Influence of the Period of Study. Open J. Mod. Hydrol. 2020, 10, 81–104. [Google Scholar] [CrossRef]
- Shawul, A.A.; Alamirew, T.; Dinka, M.O. Calibration and validation of SWAT model and estimation of water balance com-ponents of Shaya mountainous watershed, Southeastern Ethiopia. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 13955–13978. [Google Scholar]
- Soil and Water Assessment Tool SWAT, Theoretical Documentation. Available online: https://swat.tamu.edu/media/1292/SWAT2005theory.pdf (accessed on 3 January 2020).
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC Crop Growth Model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Gil, J.U.; Escudero, R.J.; Benirez, E.T.; Aguirrre, H.D.I.; Quiroz, J.F.E. Mapping King-Grass (Pennisetum purpureum) Biomass Yield for Cellulosic Ethanol Production in Veracruz, Mexico. In Proceedings of the International SWAT Conference, University of Castilla La Mancha, Toledo, Spain, 15–17 June 2011. [Google Scholar]
- Kiniry, J.R.; Sanderson, M.A.; Williams, J.R.; Tischler, C.R.; Hussey, M.A.; Ocumpaugh, W.R.; Read, J.C.; Van Esbroeck, G.; Reed, R.L. Simulating Alamo Switchgrass with the ALMANAC Model. Agron. J. 1996, 88, 602–606. [Google Scholar] [CrossRef]
- Gaiser, T.; De Barros, I.; Sereke, F.; Lange, F.-M. Validation and reliability of the EPIC model to simulate maize production in small-holder farming systems in tropical sub-humid West Africa and semi-arid Brazil. Agric. Ecosyst. Environ. 2010, 135, 318–327. [Google Scholar] [CrossRef]
- Arundale, R.A.; Dohleman, F.G.; Heaton, E.A.; Mcgrath, J.M.; Voigt, T.B.; Long, S.P. Yields of Miscanthus × giganteusand Panicum virgatum decline with stand age in the Midwestern USA. Glob. Chang. Biol. Bioenergy 2013, 6, 1–13. [Google Scholar] [CrossRef]
- Trybula, E.M.; Cibin, R.; Burks, J.L.; Chaubey, I.; Brouder, S.M.; Volenec, J.J. Perennial rhizomatous grasses as bioenergy feedstock in SWAT: Parameter development and model improvement. GCB Bioenergy 2014, 7, 1185–1202. [Google Scholar] [CrossRef] [Green Version]
- Phaikeaw, C.; Phunphiphat, W.; Phunpiphat, R.; Kulna, S. Effect of Rate and Application time of Nitrogen Fertilizer on Forage Yield and Chemical Composition of Dwarf Napier Grass in Sukhothai Province. In Annual Report of Bereau Animal Nutrition Development 2004; Thai National AGRIS Centre: Bangkok, Thailand, 2004; pp. 45–54. [Google Scholar]
- Hole-Filled SRTM for the Globe. Version CGIAR-CSI SRTM 90m Database. Available online: http://srtm.csi.cgiar.org (accessed on 10 March 2020).
- Arino, O.; Ramos Peres, J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global Land Cover Map for 2009; European Space Agency; Université Catholique de Louvain (UCL); PANGAEA: Bremen, Germany, 2010. [Google Scholar]
- NCEP Climate Forecast System Reanalysis (CFRS). Available online: http://globalweather.tamu.edu/ (accessed on 23 March 2020).
- Fischer, G.; Nachtergaele, F.O.; Prieler, S.; Teixeira, E.; Tóth, G.; van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones (GAEZ v3.0): Model Documentation; IIASA; FAO: Laxenburg, Austria, 2012; p. 179. [Google Scholar]
- Vuthiprachumpai, L.; Nakamanee, G.; Punpipat, W.; Monchaikul, S. Effect of Plant Spacings on Yield and Chemical Com-position of Napier Grass (Pennisetum purpureum), Dwarf Elephant Grass (P. purpureum cv. Mott) and King Grass (P. pur-pureum x P. americanum) at Chainat Province. In Annual Report of Bureau Animal Nutrition Development 1998; Thai National AGRIS Centre: Bangkok, Thailand, 1998; pp. 194–228. [Google Scholar]
- Suksaran, W.; Nuntachomchoun, P.; Vongpipatana, C. Yield and Cheimcal Compositions of Napier Grass in Various locations II Effect of Cutting Interval on Yield and Chemical Compositions of Three Varieties of Napier Grass (2.4) in Petchabun Province. In Annual Report of Bureau Animal Nutrition Development 1991; Thai National AGRIS Centre: Bangkok, Thailand, 1991; pp. 41–53. [Google Scholar]
- Klum-Em, K.; Pojun, S.; Thammasal, P. Effect of Rate and Application Period of Nitrogen Fertilizer on Yield and Chemical Composition of Dwarf Napier Grass in Sa Kaeo Province. In Annual Report of Bureau Animal Nutrition Development 2002; Thai National AGRIS Centre: Bangkok, Thailand, 2002; pp. 159–174. [Google Scholar]
- Waipanya, S.; Kulna, S.; Suriyachaiwatana, I.; Srichoo, C. Effect of Plant Spacing on Yield and Chemical Composition of 3 Varieties of Napier Grass in Nakhonpanom Province. In Annual Report of Bureau Animal Nutrition Development 2003; Thai National AGRIS Centre: Bangkok, Thailand, 2003; pp. 32–42. [Google Scholar]
- Chainosaeng, W.; Nuntachomchoun, P.; Suksaran, W. Yield and Chemical Compositions of Napier Grass in Various Locations Effect of Plant Spacing on Yield and Chemical Compositions of Three Varieties of Napier Grass (1.4) In Petchabun Province. In Annual Report of Bureau of Animal Nutrition Development 2004; Thai National AGRIS Centre: Bangkok, Thailand, 2004; pp. 26–40. [Google Scholar]
- Chubisaeng, W.; Bhokasawat, K.; Intarit, S.; Wongpipat, C. Effect of Rate and Application Time of Nitrogen Fertilizaer on Yield and Chemical Composition of Dwarf Napier Grass in Renu Soil Series. In Annual Report of Bureau Animal Nutrition Development 2004; Thai National AGRIS Centre: Bangkok, Thailand, 2004; pp. 55–78. [Google Scholar]
- Yuthavoravit, C.; Suksaran, W.; Paotong, S. Effect of Rate and Application Time of Nitrogen Fertilizer on Yield and Chemical Composition of Dwarf Napier Grass in Hub-Kapong Soil Series. In Annual Report of Bureau Animal Nutrition Development 2004; Thai National AGRIS Centre: Bangkok, Thailand, 2004; pp. 79–102. [Google Scholar]
- Phunphiphat, W.; Phunphiphat, R.; Kulna, S. Study on cost of production and forage yield of Dwarf Napeir Under Intensive Management. In Annual Report of Bureau Animal Nutrition Development 2005; Thai National AGRIS Centre: Bangkok, Thailand, 2005; pp. 87–99. [Google Scholar]
- Thorsen, M.; Refsgaard, J.C.; Hansen, S.; Pebesma, E.; Jensen, J.; Kleeschulte, S. Assessment of uncertainty in simulation of nitrate leaching to aquifers at catchment scale. J. Hydrol. 2001, 242, 210–227. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Williams, J.R.; Izaurralde, R.C.; Atwood, J.D. Sensitivity And Uncertainty Analyses Of Crop Yields And Soil Organic Carbon Simulated With Epic. Trans. ASAE 2005, 48, 1041–1054. [Google Scholar] [CrossRef]
- Jesiek, J.B.; Wolf, D.D. Sensitivity Analysis of the Virginia Phosphorus Index Management Tool. Trans ASAE 2005, 48, 1773–1781. [Google Scholar] [CrossRef] [Green Version]
- Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, 1st ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.-G. Comparison of two different approaches of sensitivity analysis. Phys. Chem. Earth 2002, 27, 645–654. [Google Scholar] [CrossRef]
- Chaubey, I.; Raj, C.; Trybula, E.; Frakenberger, J.; Brouder, S.; Volencec, J. Improving the Simulation of Biofuel Crop Sustain-ability Assessment Using SWAT Model. In Proceedings of the International SWAT Conference, University of Castilla La Mancha, Toledo, Spain, 15–17 June 2011. [Google Scholar]
- Zhang, X.; Srinivasan, R.; Hao, F. Predicting Hydrologic Response to Climate Change in the Luohe River Basin Using the SWAT Model. Trans. ASABE 2007, 50, 901–910. [Google Scholar] [CrossRef]
- Wijitphan, S.; Lowilai, P. Effects of Cutting Interval on Yields and Nutritive Values of King Napier Grass (Pennisetum pur-pureum cv. King grass) under Irrigation Supply. KKU Res. J. 2011, 16, 215–224. [Google Scholar]
- South Power Restored After Thailand’s “Worst-Ever” Blackout (Updated). Available online: https://www.bangkokpost.com/learning/learning-news/351298/south-power-restored-after-thailand-s-worst-ever-blackout (accessed on 3 January 2021).
- Krabi Coal Plant Up in the Air. Available online: https://www.bangkokpost.com/thailand/general/1237518/krabi-coal-plant-up-in-the-air (accessed on 3 January 2021).
- Janejadkarn, A.; Chavalparit, O. Biogas Production from Napier Grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum). Adv. Mater. Res. 2013, 856, 327–332. [Google Scholar] [CrossRef]
- Bossel, U.; Eliasson, B.; Taylor, G. The Future of the Hydrogen Economy: Bright or Bleak? Cogener. Distrib. Gener. J. 2003, 18, 29–70. [Google Scholar] [CrossRef]
- Krittayakasem, P.; Patumsawad, S.; Garivait, S. Emission Inventory of Electricity Generation in Thailand. JSEE 2011, 2, 65–69. [Google Scholar]
Parameter | Acronym | Range | Initial Value | Unit |
---|---|---|---|---|
Radiation use efficiency in ambient CO2 | BIO_E | 35–53 | 47 | (kg/ha)·(MJ/m2)−1 |
Potential harvested index for the plant at maturity | HVSTI | 0.8–1.0 | 0.9 | NA |
Potential maximum leaf area index of the plant | BLAI | 6.0–8.0 | 6.2 | (m2·m−2) |
Fraction of growing season coinciding with LAIMX1 | FRGRW1 | 0.1–0.15 | 0.15 | NA |
Fraction of growing season coinciding with LAIMX2 | FRGRW2 | 0.2–0.6 | 0.5 | NA |
First point fraction of BLAI for optimum growth curve | LAIMX1 | 0.01–0.2 | 0.01 | NA |
Second point fraction of BLAI for optimum growth curve | LAIMX2 | 0.6–0.95 | 0.9 | NA |
Fraction of growing season when growth declines | DLAI | 0.45–1.0 | 0.95 | NA |
Data | Resolution/Type of Data | Year | Source |
---|---|---|---|
Digital Elevation Model (DEM), (STRM 90 m) | 90 m | - | United States Geological Surveys (USGS) |
Land Use/Land Cover, (GlobCover 2009) | 300 m | 2009 | European Space Agency (ESA) |
Land cover | Polygons | 2009–2014 | Land Development Department of Thailand (LDD) |
Soil data, (Harmonized World Soil Database v 1.2) | 30 arc-second raster | - | FAO-UNESCO harmonized world soil database |
Weather data | Weather observing station | 1993–2005 | Thai Meteorological Department (TMD) |
Weather data | 2.5° × 3.75° | 1979–2014 | The National Centers for Environmental Prediction (NCEP) |
BIO_E (kg/ha)/(MJ/m2) | HVSTI | BLAI (m2/m2) | FRGRW1 | FRGRW2 | LAIMX1 | LAIMX2 | DLAI | RMSE of Yield (t·ha−1) | |
---|---|---|---|---|---|---|---|---|---|
Initial value | 47 | 0.9 | 6.2 | 0.15 | 0.5 | 0.01 | 0.9 | 0.95 | 10.77 |
Final value | 38 | 0.8 | 6.0 | 0.15 | 0.2 | 0.01 | 0.7 | 0.55 | 1.49 |
Treatment | Mean DMY (t·ha−1) | RMSE (t·ha−1) | ME (t·ha−1) | R2 | |
---|---|---|---|---|---|
Measured | Simulated | ||||
Con (n = 42) | 12.58 | 12.83 | 1.491 | 0.249 | 0.81 |
T1 (n = 15) | 18.60 | 18.68 | 1.163 | 0.083 | 0.74 |
T2 (n = 17) | 21.94 | 21.87 | 0.866 | −0.076 | 0.72 |
T3 (n = 19) | 25.85 | 24.90 | 1.634 | −0.949 | 0.64 |
All (n = 93) | 17.97 | 17.89 | 1.380 | −0.082 | 0.95 |
Region | Electric Consumption (GWh) | Population (×1000) | Electric Consumption per Capita (kWh·Person−1) | Estimated yield (kt) | Average Yield (t·ha−1) | Abandoned Area (ha) | Napier Grass-Derived Electric Supply Potential (GWh) | Supply/Demand |
---|---|---|---|---|---|---|---|---|
North | 7786 | 5954 | 1308 | 4099 | 17.4 | 235,470 | 4408 | 56.6% |
East | 29,280 | 5219 | 5611 | 4273 | 21.5 | 198,659 | 4596 | 15.7% |
West | 7438 | 3059 | 2432 | 2949 | 16.0 | 184,458 | 3171 | 42.6% |
South | 15,043 | 9101 | 1653 | 7904 | 22.3 | 354,553 | 8501 | 56.5% |
Northeast | 22,190 | 18,872 | 1176 | 16,642 | 19.2 | 866,371 | 17,899 | 80.7% |
Central | 88,222 | 24,569 | 3591 | 5842 | 18.6 | 314,898 | 6284 | 7.1% |
Total | 169,960 | 66,774 | 2545 | 41,709 | 19.4 | 2,154,409 | 44,806 | 26.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nantasaksiri, K.; Charoen-Amornkitt, P.; Machimura, T. Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration. Energies 2021, 14, 1326. https://doi.org/10.3390/en14051326
Nantasaksiri K, Charoen-Amornkitt P, Machimura T. Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration. Energies. 2021; 14(5):1326. https://doi.org/10.3390/en14051326
Chicago/Turabian StyleNantasaksiri, Kotchakarn, Patcharawat Charoen-Amornkitt, and Takashi Machimura. 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration" Energies 14, no. 5: 1326. https://doi.org/10.3390/en14051326
APA StyleNantasaksiri, K., Charoen-Amornkitt, P., & Machimura, T. (2021). Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration. Energies, 14(5), 1326. https://doi.org/10.3390/en14051326