Characterization of Anion Exchange Membrane Containing Epoxy Ring and C–Cl Bond Quaternized by Various Amine Groups for Application in Fuel Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Membrane Preparation
Membranes | GMA (wt%) | VBC (wt%) | DVB (wt%) |
---|---|---|---|
GVD75 | 75 | 15 | 10 |
GVD45 | 45 | 45 | 10 |
GVD15 | 15 | 75 | 10 |
Reagent | Concentration (M) | Reaction Temperature (°C) | Reaction Time (h) |
---|---|---|---|
TMA | 1 | 30 | 12 |
TEA | 1 | 50 | 12 |
TPA | 1 | 50 | 12 |
DABCO | 1 | 60 | 12 |
2.3. Membrane Measurements
2.3.1. Morphological Evaluation
2.3.2. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3.3. Thermal Analysis
2.3.4. Water Uptake
2.3.5. Ionic Conductivity
2.3.6. Ion Exchange Capacity (IEC)
2.3.7. Membrane Stability in Alkaline Solution
3. Results and Discussion
3.1. SEM
3.2. FT-IR
3.3. Water Uptake, Ion Exchange Capacity, and Conductivity
Membrane | Water Uptake (%) | IEC (meq/g) | Membrane thickness (mm) | Conductivity (S·cm−1) at 60 °C |
---|---|---|---|---|
GDV15-TMA | 38 | 1.31 | 0.19 | 0.020 |
GDV15-TEA | 24 | 0.82 | 0.18 | 0.015 |
GDV15-TPA | 38 | 1.34 | 0.19 | 0.022 |
GDV15-DABCO | 21 | 0.72 | 0.21 | 0.009 |
GDV45-TMA | 35 | 0.98 | 0.19 | 0.019 |
GDV45-TEA | 33 | 0.91 | 0.18 | 0.017 |
GDV45-TPA | 20 | 0.65 | 0.21 | 0.0091 |
GDV45-DABCO | 28 | 0.78 | 0.19 | 0.014 |
GDV75-TMA | 33 | 0.93 | 0.19 | 0.018 |
GDV75-TEA | 22 | 0.68 | 0.19 | 0.011 |
GDV75-TPA | 31 | 0.89 | 0.18 | 0.016 |
GDV75-DABCO | 41 | 1.34 | 0.17 | 0.021 |
Sample | IEC (meq·g−1) | σ at 60°C (S·cm−1) | Ea (kJ·mol−1) |
---|---|---|---|
GDV15-TMA | 1.31 | 0.020 | 19.10 |
GDV15-TPA | 1.34 | 0.022 | 10.40 |
GDV45-TMA | 0.98 | 0.019 | 11.55 |
GDV45-TEA | 0.91 | 0.017 | 15.64 |
GDV75-TMA | 0.93 | 0.018 | 13.44 |
GDV75-DABCO | 1.34 | 0.021 | 15.34 |
3.4. Thermal Stability
3.5. Alkaline Stability
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, H.; Shen, P.K. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev. 2012, 41, 2382–2394. [Google Scholar] [CrossRef] [PubMed]
- Kreuer, K.D. Ion conducting membranes for fuel cells and other electrochemical devices. Chem. Mater. 2014, 26, 361–380. [Google Scholar] [CrossRef]
- Woo, S.H.; Park, J.; Min, B.R. Relationship between permeate flux and surface roughness of membranes with similar water contact angle values. Sep. Purif. Technol. 2015, 146, 187–191. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Pletcher, D.; Li, X. Prospects for alkaline zero gap water electrolysers for hydrogen production. Int. J. Hydrogen Energy 2011, 36, 15089–15104. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, W.; Bohrisch, J.; Laschewsky, A. Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes. Prog. Polym. Sci. 2010, 35, 511–577. [Google Scholar] [CrossRef]
- Cope, A.C.; Mehta, A.S. Mechanism of the hofmann elimination reaction: An ylide intermediate in the pyrolysis of a highly branched quaternary hydroxide. J. Am. Chem. Soc. 1963, 85, 1949–1952. [Google Scholar] [CrossRef]
- Cope, A.C.; Trumbull, E.R. Olefins from Amines: The Hofmann Elimination Reaction and Amine Oxide Pyrolysis in Organic Reactions; R.E. Krieger Publication: Huntington, NY, USA, 1975. [Google Scholar]
- Chempath, S.; Boncella, J.M.; Pratt, L.R.; Henson, N.; Pivovar, B.S. Density functional theory study of degradation of tetraalkylammonium hydroxides. J. Phys. Chem. C 2010, 114, 11977–11983. [Google Scholar] [CrossRef]
- Alikhani, M.; Moghbeli, M.R. Ion-exchange polyhipe type membrane for removing nitrate ions: Preparation, characterization, kinetics and adsorption studies. Chem. Eng. J. 2014, 239, 93–104. [Google Scholar] [CrossRef]
- Higa, M.; Tanaka, N.; Nagase, M.; Yutani, K.; Kameyama, T.; Takamura, K.; Kakihana, Y. Electrodialytic properties of aromatic and aliphatic type hydrocarbon-based anion-exchange membranes with various anion-exchange groups. Polymer 2014, 55, 3951–3960. [Google Scholar] [CrossRef]
- Dowding, P.J.; Goodwin, J.W.; Vincent, B. The characterization of porous styrene-glycidyl methacrylate copolymer beads prepared by suspension polymerization. Colloids Surf. A Physicochem. Eng. Aspects 1998, 145, 1–3. [Google Scholar] [CrossRef]
- Zhang, X.; Tanaka, H. Copolymerization of glycidyl methacrylate with styrene and applications of the copolymer as paper-strength additive. J. Appl. Polym. Sci. 2001, 80, 334–339. [Google Scholar] [CrossRef]
- Merle, G.; Wessling, M.; Nijmeijer, K. Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 2011, 377, 1–35. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, G.; Liu, X.; Zhang, Z.; Li, C.; Xu, T. Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent-free strategy. J. Membr. Sci. 2011, 371, 155–162. [Google Scholar] [CrossRef]
- Lin, X.; Gong, M.; Liu, Y.; Wu, L.; Li, Y.; Liang, X.; Li, Q.; Xu, T. A convenient, efficient and green route for preparing anion exchange membranes for potential application in alkaline fuel cells. J. Membr. Sci. 2013, 425–426, 190–199. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, J.; Wang, C.; Chu, D. Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells. J. Power Sources 2010, 195, 3765–3771. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, C.; Xu, T.; Yu, F.; Fu, Y. Novel anion-exchange organic-inorganic hybrid membranes: Preparation and characterizations for potential use in fuel cells. J. Membr. Sci. 2008, 321, 299–308. [Google Scholar] [CrossRef]
- He, S.S.; Frank, C.W. Facilitating hydroxide transport in anion exchange membranes via hydrophilic grafts. J. Mater. Chem. A 2014, 2, 16489–16497. [Google Scholar] [CrossRef]
- Elattar, A.; Elmidaoui, A.; Pismenskaia, N.; Gavach, C.; Pourcelly, G. Comparison of transport properties of monovalent anions through anion-exchange membranes. J. Membr. Sci. 1998, 143, 249–261. [Google Scholar] [CrossRef]
- Wang, J.; He, R.; Che, Q. Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene. J. Colloid Interface Sci. 2011, 361, 219–225. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Li, Q.; Xiao, G.; Bjerrum, N.J. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J. Membr. Sci. 2003, 226, 169–184. [Google Scholar] [CrossRef]
- Buchmüller, Y.; Wokaun, A.; Gubler, L. Fuel cell membranes based on grafted and post-sulfonated glycidyl methacrylate (GMA). Fuel Cells 2013, 13, 1177–1185. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, C.; Gong, M.; Xu, T. New anion exchanger organic-inorganic hybrid materials and membranes from a copolymer of glycidylmethacrylate and γ-methacryloxypropyl trimethoxy silane. J. Appl. Polym. Sci. 2006, 102, 3580–3589. [Google Scholar] [CrossRef]
- Socrates, G. Infrared Characteristic Group Frequencies: Tables and Charts; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Cao, Y.C.; Wang, X.; Mamlouk, M.; Scott, K. Preparation of alkaline anion exchange polymer membrane from methylated melamine grafted poly(vinylbenzyl chloride) and its fuel cell performance. J. Mater. Chem. 2011, 21, 12910–12916. [Google Scholar] [CrossRef]
- Hasaninejad, A.; Shekouhy, M.; Golzar, N.; Zare, A.; Doroodmand, M.M. Silica bonded N-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (sb-dabco): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4h-benzo[b]pyran derivatives. Appl. Catal. A 2011, 402, 11–22. [Google Scholar] [CrossRef]
- Nasef, M.M. Radiation-grafted membranes for polymer electrolyte fuel cells: Current trends and future directions. Chem. Rev. 2014, 114, 12278–12329. [Google Scholar] [CrossRef] [PubMed]
- Paddison, S.J.; Paul, R. The nature of proton transport in fully hydrated nafion®. Phys. Chem. Chem. Phys. 2002, 4, 1158–1163. [Google Scholar] [CrossRef]
- Choi, P.; Jalani, N.H.; Datta, R. Thermodynamics and proton transport in nafion i. membrane swelling, sorption, and ion-exchange equilibrium. J. Electrochem. Soc. 2005, 152, E84–E89. [Google Scholar] [CrossRef]
- Maurya, S.; Shin, S.H.; Kim, M.K.; Yun, S.H.; Moon, S.H. Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion. J. Membr. Sci. 2013, 443, 28–35. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Slade, R.C.T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 2005, 5, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Ghigo, G.; Cagnina, S.; Maranzana, A.; Tonachini, G. The mechanism of the stevens and sommelet-hauser rearrangements. A theoretical study. J. Org. Chem. 2010, 75, 3608–3617. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Elabd, Y.A. Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells; American Chemical Society: Washington, DC, USA, 2012; p. 1096. [Google Scholar]
- Agel, E.; Bouet, J.; Fauvarque, J.F. Corrigendum to “Characterization and use of anionic membranes for alkaline fuel cells”: [Journal of Power Sources 101 (2001) 267–274]. J. Power Sources 2002, 105, 87. [Google Scholar] [CrossRef]
- Bauer, B.; Strathmann, H.; Effenberger, F. Anion-exchange membranes with improved alkaline stability. Desalination 1990, 79, 125–144. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.K.; Lee, J.S.; Woo, S.H.; Seo, J.A.; Min, B.R. Characterization of Anion Exchange Membrane Containing Epoxy Ring and C–Cl Bond Quaternized by Various Amine Groups for Application in Fuel Cells. Energies 2015, 8, 7084-7099. https://doi.org/10.3390/en8077084
Jeong SK, Lee JS, Woo SH, Seo JA, Min BR. Characterization of Anion Exchange Membrane Containing Epoxy Ring and C–Cl Bond Quaternized by Various Amine Groups for Application in Fuel Cells. Energies. 2015; 8(7):7084-7099. https://doi.org/10.3390/en8077084
Chicago/Turabian StyleJeong, Sung Kuk, Ju Sung Lee, Sahng Hyuck Woo, Jin Ah Seo, and Byoung Ryul Min. 2015. "Characterization of Anion Exchange Membrane Containing Epoxy Ring and C–Cl Bond Quaternized by Various Amine Groups for Application in Fuel Cells" Energies 8, no. 7: 7084-7099. https://doi.org/10.3390/en8077084
APA StyleJeong, S. K., Lee, J. S., Woo, S. H., Seo, J. A., & Min, B. R. (2015). Characterization of Anion Exchange Membrane Containing Epoxy Ring and C–Cl Bond Quaternized by Various Amine Groups for Application in Fuel Cells. Energies, 8(7), 7084-7099. https://doi.org/10.3390/en8077084