Use of Maximum Entropy Modeling in Wildlife Research
Abstract
:1. Introduction
2. What is Maxent?
2.1. Model output
2.2. Variable response
2.3. Model evaluation
3. Strengths of Maxent
3.1. Sampling effort
3.2. Spatial error of location data
3.3. Mapping feature
4. Potential Weaknesses of Maxent
4.1. Transferability
4.2. Model evaluation
4.3. Model selection
5. Needed Advancements in Maxent
5.1. Threshold development
5.2. Model selection
5.3. Repeated sampling of known individuals
Reference | Species | Location | Objective |
---|---|---|---|
[16] | Geckos (Uroplatus spp.) | Madagascar | Predict species distributions |
[10] | American black bear (Ursus americanus) | North-central Colorado, USA | Assess denning habitat |
[36] | Bush dog (Speothos venaticus) | Central and South America | Evaluate quality of protection and direct research effort through species distributions |
[32] | Little bustard (Tetrax tetrax) | Central Spain | Model seasonal changes in distribution |
[12] | Sage grouse (Centrocercus urophasianus) | Southern Oregon, USA | Predict and map nesting habitat |
[37] | Brown-backed bearded sakis (Chiropotes israelita) Black uakaris (Cacajao spp.) | Western Amazon, Brazil | Model geographical distributions and fundamental niches |
[38] | Cuban treefrog (Osteopilus sepentrionalis) | Caribbean and Gulf of Mexico | Assess potential distribution of invasive species |
[20] | Asian slow lorises (Nycticebus spp.) | Southeast Asia | Assess threats and set conservation priorities through species distributions |
[13] | Mule deer (Odocoileus hemionus) Gemsbok (Oryx gazella) | South-central New Mexico, USA | Assess habitat use |
6. Conclusions
Acknowledgements
References and Notes
- MacKenzie, D.K.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J.A.; Langtimm, C.A. Estimating site occupancy rates when detection probabilities are less than one. Ecology 2002, 83, 2248–2255. [Google Scholar] [CrossRef]
- Gu, W.; Swihart, R.K. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biol. Conserv. 2004, 116, 195–203. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J.; Lohmann, L.G.; Loiselle, B.A.; Manion, G.; Moritz, C.; Nakamura, M.; Nakazawa, Y.; Overton, J.M.; Peterson, A.T.; Phillips, S.J.; Richardson, K.S.; Scachetti-Pereira, R.; Schapire, R.E.; Soberón, J.; Williams, S.; Wisz, M.S.; Zimmermann, N.E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent software for species habitat modeling, version 3.3.1. Available online: http://www.cs.princeton.edu/~schapire/maxent/ (accessed on August 19, 2009).
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning; ACM Press: New York, NY, USA, 2004; pp. 655–662. [Google Scholar]
- Grendár, M., Jr.; Grendár, M. Maximum entropy: Clearing up mysteries. Entropy 2001, 3, 58–63. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Baldwin, R.B.; Bender, L.C. Den-site characteristics of black bears in Rocky Mountain National Park, Colorado. J. Wildl. Manag. 2008, 72, 1717–1724. [Google Scholar] [CrossRef]
- Phillips, S.J. A brief tutorial on Maxent, versions: 3.3.1. Available online: http://www.cs.princeton.edu/~schapire/maxent/ (accessed on August 19, 2009).
- Yost, A.C.; Petersen, S.L.; Gregg, M.; Miller, R. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a long-term dataset from Southern Oregon. Ecol. Inform. 2008, 3, 375–386. [Google Scholar] [CrossRef]
- Hoenes, B.D.; Bender, L.C. Relative habitat and browse use of native desert mule deer and exotic oryx in the greater San Andres Mountains, New Mexico. Human–Wildlife Conflicts 2010, (in press). [Google Scholar]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Engler, R.; Guisan, A.; Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 2004, 41, 263–274. [Google Scholar] [CrossRef]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A. NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Diversity Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Peterson, A.T.; Loiselle, B.A. The NCEAS Predicting Species Distributions Working Group. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 2008, 45, 239–247. [Google Scholar] [CrossRef]
- Thorn, J.S.; Nijman, V.; Smith, D.; Nekaris, K.A.I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 2009, 15, 289–298. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Phillips, S.J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 2008, 31, 272–278. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 2007, 13, 265–275. [Google Scholar] [CrossRef]
- Raes, N.; ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography 2007, 30, 727–736. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Pearson, R.G. Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. 2008. Available online: http://ncep.amnh.org (accessed on November 3, 2009).
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 2008, 217, 48–58. [Google Scholar] [CrossRef]
- Suárez-Seoane, S.; García de la Morena, E.L.; Morales Prieto, M.B.; Osborne, P.E.; de Juana, E. Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution. Ecol. Model. 2008, 219, 17–29. [Google Scholar] [CrossRef]
- Levine, R.S.; Yorita, K.L.; Walsh, M.C.; Reynolds, M.G. A method for statistically comparing spatial distribution maps. Int. J. Health Geogr. 2009, 8, p. 7. Available online: http://www.ij-healthgeographics.com/content/8/1/7 (accessed on August 19, 2009). [CrossRef] [PubMed]
- Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. B Met. 2003, 64, 583–639. [Google Scholar] [CrossRef]
- DeMatteo, K.E.; Loiselle, B.A. New data on the status and distribution of the bush dog (Speothos venaticus): Evaluating its quality of protection and directing research efforts. Biol. Conserv. 2008, 141, 2494–2505. [Google Scholar] [CrossRef]
- Boubli, J.P.; de Lima, M.G. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in northwestern Amazonia via a maximum entropy algorithm. Int. J. Primatol. 2009, 30, 217–228. [Google Scholar] [CrossRef]
- Rödder, D.; Weinsheimer, F. Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? J. Nat. Hist. 2009, 43, 1207–1217. [Google Scholar] [CrossRef]
- Baldwin, R.A. Population demographics, habitat utilization, critical habitats, and condition of black bears in Rocky Mountain National Park, Colorado. Ph.D. dissertation, New Mexico State University, Las Cruces, NM, USA, 2008. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Baldwin, R.A. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 2009, 11, 854-866. https://doi.org/10.3390/e11040854
Baldwin RA. Use of Maximum Entropy Modeling in Wildlife Research. Entropy. 2009; 11(4):854-866. https://doi.org/10.3390/e11040854
Chicago/Turabian StyleBaldwin, Roger A. 2009. "Use of Maximum Entropy Modeling in Wildlife Research" Entropy 11, no. 4: 854-866. https://doi.org/10.3390/e11040854
APA StyleBaldwin, R. A. (2009). Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 11(4), 854-866. https://doi.org/10.3390/e11040854