The Relation between Granger Causality and Directed Information Theory: A Review
Abstract
:1. Introduction
“As an application of this, let us consider the case where represents the temperature at 9 A.M. in Boston and represents the temperature at the same time in Albany. We generally suppose that weather moves from west to east with the rotation of the earth; the two quantities and its correlate in the other direction will enable us to make a precise statement containing some if this content and then verify whether this statement is true or not. Or again, in the study of brain waves we may be able to obtain electroencephalograms more or less corresponding to electrical activity in different part of the brain. Here the study of coefficients of causality running both ways and of their analogues for sets of more than two functions f may be useful in determining what part of the brain is driving what other part of the brain in its normal activity.”
1.1. What Is, and What Is Not, Granger Causality
1.2. A Historical Viewpoint
Granger’s paper in 1969 does not contain much new information [3], but rather, it gives a refined presentation of the concepts.“In the case of q variables, similar equations exist if coherence is replaced by partial coherence, and a new concept of ‘partial information’ is introduced.”
Note that most of these studies considered bivariate analysis, with the notable exception of [46], in which the presence of side information (other measured time series) was explicitely considered.“the latter measure can also be understood as an information theoretic formulation of the Granger causality concept.”
1.3. Outline
1.4. Notations
2. Granger’s Causality
2.1. From Prediction-Based Definitions…
2.2. …To a Probabilistic Definition
2.3. Instantaneous Coupling
2.4. More on Graphs
3. Directed Information Theory and Directional Dependence
3.1. Notation and Basics
3.2. Directional Dependence between Stochastic Processes; Causal Conditioning
- In the absence of feedback in the link from A to B, there is the following:
- Likewise, if there is only a feedback term, then and then:
- If the link is memoryless, i.e., the output does not depend on the past, then:
3.3. Directed Information Rates
3.4. Transfer Entropy and Instantaneous Information Exchange
3.5. Accounting for Side Information
4. Inferring Granger Causality and Instantaneous Coupling
4.1. Information-theoretic Measures and Granger Causality
4.2. Granger Causality Inference
4.2.1. Directed Information Emerges from a Hypotheses-testing Framework
4.2.2. Linear Prediction based Approach and the Gaussian Case
4.2.3. The Model-based Approach
5. Discussion and Extensions
Acknowledgements
References
- Rao, A.; Hero, A.O.; States, D.J.; Engel, J.D. Inference of Biologically Relevant Gene Influence Networks Using the Directed Information Criterion. In Proceedings of the ICASSP, Toulouse, France, 15–19 May, 2006.
- Rao, A.; Hero, A.O.; States, D.J.; Engel, J.D. Motif discovery in tissue-specific regulatory sequences using directed information. EURASIP J. Bioinf. Syst. Biol. 2007, 13853. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.W.J. Investigating causal relations by econometrics models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Sims, C.A. Money, income and causality. Am. Econ. Rev. 1972, 62, 540–552. [Google Scholar]
- Sporns, O. The Networks of the Brain; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Kaufmann, R.K.; Stern, D.I. Evidence for human influence on climat from hemispheric temperature relations. Nature 1997, 388, 39–44. [Google Scholar] [CrossRef]
- Triacca, U. On the use of Granger causality to investigate the human influence on climate. Theor. Appl. Clim. 2001, 69, 137–138. [Google Scholar] [CrossRef]
- Wiener, N. The theory of prediction. In Modern Mathematics for the Engineer; MacGrawHill: New York, NY, USA, 1956; pp. 165–190. [Google Scholar]
- Granger, C.W.J. Times Series Anlaysis, Cointegration and Applications. In Nobel Lecture; Stockholm, Sweden, 2003. [Google Scholar]
- Marko, H. The bidirectional communication theory–a generalization of information theory. IEEE Trans. Commun. 1973, 21, 1345–1351. [Google Scholar] [CrossRef]
- Kramer, G. Directed Information for Channels with Feedback. PhD thesis, Swiss Federal Institute of Technology Zurich, 1998. [Google Scholar]
- Massey, J.L. Causality, Feedback and Directed Information. In Proceedings of the International Symposium on Information Theory and its Applications, Waikiki, HI, USA, November 1990.
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Hlavackova-Schindler, K.; Palus, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007, 441, 1–46. [Google Scholar] [CrossRef]
- Gourévitch, B.; Bouquin-Jeannès, R.L.; Faucon, G. Linear and nonlinear causality between signals: Methods, example and neurophysiological applications. Biol. Cybern. 2006, 95, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Palus, M. From nonlinearity to causality: Statistical testing and inference of physical mechanisms underlying complex dynamics. Contemp. Phys. 2007, 48, 307–348. [Google Scholar] [CrossRef]
- Pearl, J. Causality: Models, Reasoning and Inference; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lauritzen, S. Chapter 2: Causal inference from graphical models. In Complex Stochastic Systems; Barndroff-Nielsen, O., Cox, D.R., Kluppelberg, C., Eds.; Chapman and Hall: London, UK, 2001; pp. 63–108. [Google Scholar]
- Lauritzen, S. Graphical Models; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Whittaker, J. Graphical Models in Applied Multivariate Statistics; Wiley& Sons: Weinheim, Germany, 1989. [Google Scholar]
- Granger, C.W.J. Economic processes involving feedback. Inf. Control 1963, 6, 28–48. [Google Scholar] [CrossRef]
- Caines, P.E.; Chan, C.W. Feedback between stationary stochastic processes. IEEE Trans. Autom. Control 1975, 20, 498–508. [Google Scholar] [CrossRef]
- Hosoya, Y. On the granger condition for non-causality. Econometrica 1977, 45, 1735–1736. [Google Scholar] [CrossRef]
- Chamberlain, G. The general equivalence of granger and sims causality. Econometrica 1982, 50, 569–581. [Google Scholar] [CrossRef]
- Florens, J.P.; Mouchart, M. A note on noncausality. Econometrica 1982, 50, 583–591. [Google Scholar] [CrossRef]
- Granger, C.W.J. Some recent developments in a concept of causality. J. Econ. 1988, 39, 199–211. [Google Scholar] [CrossRef]
- Granger, C.W.J. Testing for causality: A personal viewpoint. J. Econ. Dyn. Control 1980, 2, 329–352. [Google Scholar] [CrossRef]
- Eichler, M. Graphical modeling of multivariate time series. Proba. Theory Relat. Fields 2011. [Google Scholar] [CrossRef]
- Dahlaus, R.; Eichler, M. Causality and graphical models in time series analysis. In Highly Structured Stochastic Systems; Green, P., Hjort, N., Richardson, S., Eds.; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Eichler, M. On the evaluation of information flow in multivariate systems by the directed transfer function. Biol. Cybern. 2006, 94, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Geweke, J. Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 1982, 77, 304–313. [Google Scholar] [CrossRef]
- Geweke, J. Measures of conditional linear dependence and feedback between times series. J. Am. Stat. Assoc. 1984, 79, 907–915. [Google Scholar] [CrossRef]
- Amblard, P.O.; Michel, O.J.J. Sur Différentes Mesures de Dépendance Causales Entre Signaux Alé Atoires (On Different Measures of Causal Dependencies between Random Signals). In Proceedings of the GRETSI, Dijon, France, September 8-11, 2009.
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009, 103, 238707. [Google Scholar] [CrossRef]
- Barrett, A.B.; Barnett, L.; Seth, A.K. Multivariate Granger causality and generalized variance. Phys. Rev. E 2010, 81, 041907. [Google Scholar] [CrossRef]
- Amblard, P.O.; Michel, O.J.J. On directed information theory and Granger causality graphs. J. Comput. Neurosci. 2011, 30, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.J.; Coleman, T.P.; Kiyavash, N.; Hastopoulos, N.G. Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. J. Comput. Neurosci. 2011, 30, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Gouriéroux, C.; Monfort, A.; Renault, E. Kullback causality measures. Ann. Econ. Stat. 1987, (6–7), 369–410. [Google Scholar]
- Rissanen, J.; Wax, M. Measures of mutual and causal dependence between two time series. IEEE Trans. Inf. Theory 1987, 33, 598–601. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Dover: NY, USA, 1968. [Google Scholar]
- Quian Quiroga, R.; Arnhold, J.; Grassberger, P. Learning driver-response relashionship from synchronisation patterns. Phys. Rev. E 2000, 61, 5142–5148. [Google Scholar] [CrossRef]
- Lashermes, B.; Michel, O.J.J.; Abry, P. Measuring Directional Dependences of Information Flow between Signal and Systems. In Proceedings of the PSIP’03, Grenoble, France, 29–31 January, 2003.
- Le Van Quyen, M.; Martinerie, J.; Adam, C.; Varela, F. Nonlinear analyses of interictal eeg map the brain interdependences in human focal epilepsy. Physica D 1999, 127, 250–266. [Google Scholar] [CrossRef]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Palus, M.; Komarek, V.; Hrncir, Z.; Sterbova, K. Synchronisation as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E 2001, 63, 046211:1–6. [Google Scholar] [CrossRef]
- Frenzel, S.; Pompe, B. Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett. 2007, 99, 204101. [Google Scholar] [PubMed]
- Kaiser, A.; Schreiber, T. Information transfer in continuous processes. Physica D 2002, 166, 43–62. [Google Scholar] [CrossRef]
- Palus, M.; Vejmelka, M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E 2007, 75, 056211:2–056211:14. [Google Scholar] [CrossRef]
- Vejmelka, M.; Palus, M. Inferring the directionality of coupling with conditional mutual information. Phys. Rev. E 2008, 77, 026214. [Google Scholar] [CrossRef]
- Eichler, M. A graphical approach for evaluating effective connectivity in neural systems. Phil. Trans. R. Soc. B 2005, 360, 953–967. [Google Scholar] [PubMed]
- Kaminski, M.; Ding, M.; Truccolo, W.; Bressler, S. Evaluating causal relations in neural systems: Granger causality, directed transfer functions and statistical assessment of significance. Biol. Cybern. 2001, 85, 145–157. [Google Scholar] [PubMed]
- Lungarella, M.; Sporns, O. Mapping information flow in sensorimotor networks. PLOS Comput. Biol. 2006, 2, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Mosedale, T.J.; Stephenson, D.B.; Collins, M.; Mills, T.C. Granger causality of coupled climate processes: Ocean feedback on the north Atlantic oscillation. J. Clim. 2006, 19, 1182–1194. [Google Scholar] [CrossRef]
- Saito, Y.; Harashima, H. Recent Advances in EEG and EMG Data Processing; chapter Tracking of information within multichannel EEG record-causal analysis in EEG; Elsevier: Amsterdam, The Netherlands, 1981; pp. 133–146. [Google Scholar]
- Cover, J.; Thomas, B. Elements of Information Theory, 2nd ed.; Wiley: Weinheim, Germany, 2006. [Google Scholar]
- Kim, Y.H. A coding theorem for a class of stationary channel with feedback. IEEE Trans. Inf. Theory 2008, 54, 1488–1499. [Google Scholar] [CrossRef]
- Tatikonda, S.C. Control Under Communication Constraints . In PhD thesis; MIT: Cambridge, MA, USA, 2000. [Google Scholar]
- Tatikonda, S.; Mitter, S. The capacity of channels with feedback. IEEE Trans. Inf. Theory 2009, 55, 323–349. [Google Scholar] [CrossRef]
- Venkataramanan, R.; Pradhan, S.S. Source coding with feed-forward: Rate-distortion theorems and error exponents for a general source. IEEE Trans Inf. Theory 2007, 53, 2154–2179. [Google Scholar] [CrossRef]
- Amblard, P.O.; Michel, O.J.J. Information Flow through Scales. In Proceedings of the IMA Conference on Maths and Signal processing, Cirencester, UK, 16–18 December, 2008; p. 78.
- Amblard, P.O.; Michel, O.J.J. Measuring information flow in networks of stochastic processes. 2009; arXiv:0911.2873. [Google Scholar]
- Solo, V. On Causality and Mutual Information. In Proceedings of the 47th IEEE conference on Decision and Control, Cancun, Mexico, 9–11 December, 2008.
- Kamitake, T.; Harashima, H.; Miyakawa, H.; Saito, Y. A time-series analysis method based on the directed transinformation. Electron. Commun. Jpn. 1984, 67, 1–9. [Google Scholar] [CrossRef]
- Al-Khassaweneh, M.; Aviyente, S. The relashionship between two directed information measures. IEEE Sig. Proc. Lett. 2008, 15, 801–804. [Google Scholar] [CrossRef]
- Amblard, P.-O.; Michel, O.J.J.; Richard, C.; Honeine, P. A Gaussian Process Regression Approach for Testing Granger Causality between Time Series Data. In Proceedings of the ICASSP, Osaka, Japan, 25–30 March, 2012.
- Amblard, P.O.; Vincent, R.; Michel, O.J.J.; Richard, C. Kernelizing Geweke’s Measure of Granger Causality. In Proceedings of the IEEE Workshop on MLSP, Santander, Spain, 23–26 September, 2012.
- Marinazzo, D.; Pellicoro, M.; Stramaglia, S. Kernel-Granger causality and the analysis of dynamical networks. Phys. Rev. E 2008, 77, 056215. [Google Scholar] [CrossRef]
- Lehmann, E.L.; Casella, G. Theory of Point Estimation, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Quinn, C.J.; Kiyavas, N.; Coleman, T.P. Equivalence between Minimal Generative Model Graphs and Directed Information Graph. In Proceeding of the ISIT, St. Petersburg, Russia, 31 July–5 August, 2011.
- Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J. Escping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 2012, 108, 258701. [Google Scholar] [CrossRef] [PubMed]
- Permuter, H.H.; Kim, Y.-H.; Weissman, T. Interpretations of directed information in portfolio theory, data compression, and hypothesis testing. IEEE Trans. Inf. Theory 2011, 57, 3248–3259. [Google Scholar] [CrossRef]
- Massey, J.L.; Massey, P.C. Conservation of Mutual and Directed Information. In Proceedings of the International Symposium on Information Theory and its Applications, Adelalaïde, Australia, 4–7 September, 2005.
- Gray, R.M.; Kieffer, J.C. Mutual information rate, distorsion and quantization in metric spaces. IEEE Trans. Inf. Theory 1980, 26, 412–422. [Google Scholar] [CrossRef]
- Gray, R.M. Entropy and Information Theory; Springer-Verlag: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Pinsker, M.S. Information and Information Stability of Random Variables; Holden Day: San Francisco, USA, 1964. [Google Scholar]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy–a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.; Bossomaier, T. Transfer entropy as log-likelihood ratio. Phys. Rev. Lett. 2012, 109, 138105. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Brown, E.N. A General Statistical Framework for Assessing Granger Causality. In Proceedings of IEEE Icassp, Prague, Czech Republic, 22–27 May, 2010; pp. 2222–2225.
- Kim, S.; Putrino, D.; Ghosh, S.; Brown, E.N. A Granger causality measure for point process models of ensembled neural spiking activity. PLOS Comput. Biol. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyn, S.; Tweedie, R.L. Markov Chains and Stochastic Stability, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Schölkopf, B.; Smola, A.J. Learning with Kernels; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Lehmann, E.L.; Romano, J.P. Testing Statistical Hypotheses, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Beirlant, J.; Dudewicz, E.J.; Gyorfi, L.; van Der Meulen, E.C. Nonparametric entropy estimation: An overview. Int. J. Math. Stat. Sci. 1997, 6, 17–39. [Google Scholar]
- Goria, M.N.; Leonenko, N.N.; Mergell, V.V.; Novi Invardi, P.L. A new class of random vector entropy estimators and its applications in testing statistical hypotheses. J. Nonparam. Stat. 2005, 17, 277–297. [Google Scholar] [CrossRef]
- Kraskov, A.; Stogbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef]
- Kozachenko, L.F.; Leonenko, N.N. Sample estimate of the entropy of a random vector. Problems Inf. Trans. 1987, 23, 95–101. [Google Scholar]
- Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef]
- Leonenko, N.N.; Pronzato, L.; Savani, V. A class of Rényi information estimators for multidimensional densities. Ann. Stat. 2008, 36, 2153–2182. [Google Scholar] [CrossRef] [Green Version]
- Sricharan, K.; Raich, R.; Hero, A.O. Estimation of non-linear functionals of densities with confidence. IEEE Trans. Inf. Theory 2012, 58, 4135–4159. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Kulkarni, S.; Verdu, S. Divergence estimation for multidimensional densities via-nearest-neighbor distances. IEEE Trans. Inf. Theory 2009, 55, 2392–2405. [Google Scholar] [CrossRef]
- Basseville, M. Divergence measures for statistical data processing—an annotated bibliography. Signal Process. 2012, in press. [Google Scholar] [CrossRef]
- Bercher, J.F. Escort entropies and divergences and related canonical distribution. Phys. Lett. A 2011, 375, 2969–2973. [Google Scholar] [CrossRef] [Green Version]
- FukumizuU, K.; Gretton, A.; Sun, X.; Scholkopf, B. Kernel Measures of Conditional Dependence. In NIPS, Vancouver, Canada, 3–8 December, 2007.
- Seth, S.; Príncipe, J.C. Assessing Granger non-causality using nonparametric measure of conditional independence. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Seth, A.K.; Kendrick, K.M.; Zhou, C.; Feng, J. Partial Granger causality–eliminating exogeneous inputs and latent variables. J. Neurosci. Methods 2008, 172, 79–93. [Google Scholar] [CrossRef] [PubMed]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Amblard, P.-O.; Michel, O.J.J. The Relation between Granger Causality and Directed Information Theory: A Review. Entropy 2013, 15, 113-143. https://doi.org/10.3390/e15010113
Amblard P-O, Michel OJJ. The Relation between Granger Causality and Directed Information Theory: A Review. Entropy. 2013; 15(1):113-143. https://doi.org/10.3390/e15010113
Chicago/Turabian StyleAmblard, Pierre-Olivier, and Olivier J. J. Michel. 2013. "The Relation between Granger Causality and Directed Information Theory: A Review" Entropy 15, no. 1: 113-143. https://doi.org/10.3390/e15010113
APA StyleAmblard, P. -O., & Michel, O. J. J. (2013). The Relation between Granger Causality and Directed Information Theory: A Review. Entropy, 15(1), 113-143. https://doi.org/10.3390/e15010113