Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases
Abstract
:1. Introduction
- (1)
- (2)
- Considering a dictionary of parametric models that are relevant with respect to the statistical distribution of the wavelet packet coefficients.
2. Stochasticity Measurements
2.1. Kolmogorov Stochasticity Index: Deterministic Pattern
2.2. The Relevance of the Kolmogorov Stochasticity Parameter in Detecting Deviations From a Specified Distribution
- (1)
- The norm used, which can be cumulative or uniform;
- (2)
- The distribution, which can be specified as pdf or cdf.
For, do: | ||||
Compute the wavelet coefficients, , of the input image. | ||||
Introduce a deterministic pattern among the coefficients of a sub-band | ||||
by setting the K largest coefficients to zero (notation: ). | ||||
Compute the stochasticity parameters: | ||||
Check the distribution type from the variable “specification” | ||||
Case | specification is “cdf”, then: | |||
Compute RSV | ||||
Case | specification is “pdf”, then: | |||
Compute RSV | ||||
End | ||||
Compare the measurements obtained: for a relevant stochasticity measure, | ||||
RSV is a non-decreasing function of K. |
3. Classification From Wavelet Packet-Based Stochasticity Templates
3.1. Kolmogorov Stochasticity Measure versus Error-Bounds from Image Estimation
3.2. Texture Classification by Using Stochasticity Templates Upon Wavelet Packet Bases
Quasi-stochastic | Stochastic | Strongly-stochastic | ||||
---|---|---|---|---|---|---|
Det. | Approx. | Det. | Approx. | Det. | Approx. | |
Fabric.18 | √ | √ | √ | √ | √ | – |
Fabric.07 | √ | √ | √ | √ | – | – |
Fabric.17 | √ | √ | √ | – | – | – |
Fabric.04 | √ | √ | √ | – | – | – |
Fabric.09 | √ | √ | √ | – | – | – |
Fabric.11 | √ | – | √ | – | – | – |
Fabric.15 | √ | – | √ | – | – | – |
Fabric.00 | – | – | – | – | – | – |
Fabric.14 | – | – | – | – | – | – |
Blind approach | Stochastic structuring | ||||||
---|---|---|---|---|---|---|---|
Texture | GG | WBL | PRT | Texture | GG | WBL | PRT |
Bark.00 | 69.53 | 67.58 | 76.95 | Bark.00 | 69.92 | 68.36 | 78.13 |
Bark.06 | 71.09 | 70.70 | 62.89 | Bark.06 | 85.55 | 85.94 | 64.06 |
Bark.08 | 68.75 | 67.19 | 56.64 | Bark.08 | 69.53 | 68.36 | 56.64 |
Bark.09 | 43.36 | 42.97 | 70.70 | Bark.09 | 48.05 | 47.27 | 73.05 |
Bric.01 | 98.83 | 98.83 | 75.39 | Bric.01 | 98.83 | 98.83 | 76.56 |
Bric.04 | 84.38 | 82.81 | 87.50 | Bric.04 | 84.77 | 83.20 | 88.28 |
Bric.05 | 91.80 | 89.45 | 81.64 | Bric.05 | 92.97 | 89.84 | 83.98 |
Buil.09 | 76.56 | 97.66 | 87.89 | Buil.09 | 76.56 | 97.66 | 88.28 |
Fabr.00 | 87.89 | 86.72 | 78.13 | Fabr.00 | 94.92 | 91.80 | 78.13 |
Fabr.04 | 86.72 | 86.72 | 81.64 | Fabr.04 | 89.84 | 87.89 | 84.38 |
Fabr.07 | 98.05 | 98.05 | 75.39 | Fabr.07 | 98.05 | 98.05 | 75.39 |
Fabr.09 | 100 | 100 | 80.47 | Fabr.09 | 100 | 100 | 80.47 |
Fabr.11 | 92.58 | 92.58 | 57.81 | Fabr.11 | 92.58 | 92.58 | 57.81 |
Fabr.14 | 100 | 100 | 89.45 | Fabr.14 | 100 | 100 | 89.84 |
Fabr.15 | 92.58 | 92.19 | 57.03 | Fabr.15 | 92.97 | 92.97 | 57.03 |
Fabr.17 | 92.58 | 96.09 | 85.16 | Fabr.17 | 92.58 | 96.09 | 85.16 |
Fabr.18 | 94.92 | 91.80 | 47.27 | Fabr.18 | 94.92 | 91.80 | 47.27 |
Flow.05 | 66.80 | 65.63 | 80.47 | Flow.05 | 68.36 | 66.41 | 80.86 |
Food.00 | 96.48 | 96.48 | 84.77 | Food.00 | 100 | 100 | 87.50 |
Food.05 | 78.91 | 78.91 | 72.27 | Food.05 | 81.64 | 81.64 | 72.27 |
Food.08 | 99.61 | 100 | 86.33 | Food.08 | 99.61 | 100 | 86.33 |
Gras.01 | 98.83 | 98.83 | 52.73 | Gras.01 | 98.83 | 98.83 | 53.13 |
Leav.08 | 74.22 | 73.44 | 80.86 | Leav.08 | 82.03 | 83.20 | 80.86 |
Leav.10 | 61.72 | 60.94 | 76.17 | Leav.10 | 64.84 | 63.67 | 77.34 |
Leav.11 | 67.58 | 66.80 | 87.11 | Leav.11 | 73.05 | 72.66 | 87.50 |
Leav.12 | 78.13 | 78.52 | 53.91 | Leav.12 | 98.05 | 97.27 | 53.91 |
Leav.16 | 72.27 | 71.48 | 87.11 | Leav.16 | 72.27 | 71.48 | 87.11 |
Meta.00 | 83.20 | 82.42 | 59.38 | Meta.00 | 83.20 | 82.42 | 59.38 |
Meta.02 | 100 | 100 | 86.33 | Meta.02 | 100 | 100 | 86.33 |
Misc.02 | 96.09 | 95.70 | 56.64 | Misc.02 | 96.09 | 95.70 | 56.64 |
Sand.00 | 96.48 | 97.66 | 51.56 | Sand.00 | 96.48 | 97.66 | 51.56 |
Ston.01 | 73.83 | 74.61 | 78.13 | Ston.01 | 73.83 | 74.61 | 78.13 |
Ston.04 | 93.75 | 92.97 | 49.22 | Ston.04 | 93.75 | 92.97 | 49.22 |
Terr.10 | 55.08 | 53.52 | 87.89 | Terr.10 | 63.28 | 62.50 | 88.28 |
Tile.01 | 62.11 | 61.72 | 91.41 | Tile.01 | 62.11 | 61.72 | 91.41 |
Tile.04 | 99.61 | 99.61 | 94.14 | Tile.04 | 99.61 | 99.61 | 94.14 |
Tile.07 | 98.05 | 97.66 | 83.98 | Tile.07 | 99.22 | 98.83 | 83.98 |
Wate.05 | 100 | 100 | 56.25 | Wate.05 | 100 | 100 | 56.25 |
Wood.01 | 57.42 | 56.64 | 75.39 | Wood.01 | 61.33 | 61.33 | 75.78 |
Wood.02 | 100 | 100 | 66.41 | Wood.02 | 100 | 100 | 67.58 |
4. Content-Based Image Retrieval with Stochastic Structuring
4.1. Stochastic Structuring
4.2. Content-Based Image Retrieval on Structured Databases
Blind approach | Stochastic structuring | ||||
GG | WBL | PRT | GG | WBL | PRT |
88.12 | 87.82 | 66.05 | 90.45 | 90.02 | 66.67 |
Blind approach | Stochastic structuring | ||||
GG | WBL | PRT | GG | WBL | PRT |
78.95 | 79.60 | 83.18 | 81.10 | 81.81 | 83.51 |
Blind approach | Stochastic structuring | ||||
GG | WBL | PRT | GG | WBL | PRT |
83.99 | 84.12 | 73.76 | 86.24 | 86.33 | 74.25 |
- the GG family for modeling the stochastic textures,
- the PRT family for modeling the regular textures,
- the WBL family for modeling the whole database containing both regular and stochastic textures.
5. Content-Based Stochasticity Retrieval
5.1. Content-Based Stochasticity Retrieval by Learning the Stochasticity Tree Structure
- Learn the stochasticity tree structure for any of the “Fabric” textures by computing and from its eight, samples available from the learning database.
- Retrieve, from the test database, the samples that belong to the semantic class of any of the “Fabric” textures, that are the samples having stochasticity bases bounded by the infimum and supremum bases associated with the class.
- Sort the samples thus obtained, and compute texture-specific retrieval.
- The learned basis structure corresponding to “Fabric.0007” is any basis, B, such that:
- The learned basis structure for “Fabric.0018” is any basis B, such that:
- Query “Fabric.0007”, associated with the lowest randomness degree among the two classes, reduces the search database from 16 to eight, including seven good retrievals/eight.
- Query “Fabric.0018”, associated with the highest randomness degree among the two classes, reduces the search database from 16 to seven, including seven good retrievals/eight.
5.2. Content-Based Stochasticity Retrieval by Learning the Stochasticity Bounds
- First, we construct the learning database by using the top-half of the images: each top-half image is split into non-overlapping subimages (128 × 128 pixels per subimage). These K subimages are used to compute the stochasticity hypercube for .
- Then, we constitute the test database by using the down-half of the images: each down-half image is split into eight non-overlapping subimages. Thus, the test database is composed of subimages.
- In order to increase the number of experiments, we have also permutated the roles played by the learning and the test database (the top-half becomes the down-half and vice-versa).
Texture | TPR | FAR |
---|---|---|
Bark.00 | 62.50 | 08.97 |
Bark.06 | 37.50 | 07.69 |
Bark.08 | 62.50 | 00.80 |
Bark.09 | 75.00 | 10.58 |
Bric.01 | 31.25 | 01.44 |
Bric.04 | 37.50 | 02.56 |
Bric.05 | 50.00 | 06.89 |
Buil.09 | 37.50 | 00.96 |
Fabr.00 | 43.75 | 01.92 |
Fabr.04 | 50.00 | 07.05 |
Fabr.07 | 62.50 | 01.12 |
Fabr.09 | 37.50 | 00.48 |
Fabr.11 | 56.25 | 01.44 |
Fabr.14 | 50.00 | 0 |
Fabr.15 | 68.75 | 00.80 |
Fabr.17 | 56.25 | 01.12 |
Fabr.18 | 68.75 | 00.48 |
Flow.05 | 31.25 | 07.21 |
Food.00 | 62.50 | 01.92 |
Food.05 | 31.25 | 03.21 |
Food.08 | 56.25 | 0 |
Grass.01 | 37.50 | 04.81 |
Leav.08 | 68.75 | 12.66 |
Leav.10 | 43.75 | 09.13 |
Leav.11 | 56.25 | 04.65 |
Leav.12 | 43.75 | 04.65 |
Leav.16 | 62.50 | 01.92 |
Meta.00 | 50.00 | 01.92 |
Meta.02 | 68.75 | 00.32 |
Misc.02 | 62.50 | 00.64 |
Sand.00 | 31.25 | 02.24 |
Ston.01 | 56.25 | 08.01 |
Ston.04 | 62.50 | 01.92 |
Terr.10 | 50.00 | 08.01 |
Tile.01 | 31.25 | 02.40 |
Tile.04 | 37.50 | 00.96 |
Tile.07 | 25.00 | 0 |
Wate.05 | 62.50 | 02.40 |
Wood.01 | 56.25 | 12.18 |
Wood.02 | 56.25 | 09.29 |
Texture | TPR | FAR |
---|---|---|
Bark.00 | 100 | 18.27 |
Bark.06 | 75.00 | 13.78 |
Bark.08 | 68.75 | 03.37 |
Bark.09 | 75.00 | 20.83 |
Bric.01 | 62.50 | 03.85 |
Bric.04 | 68.75 | 04.01 |
Bric.05 | 75.00 | 08.97 |
Buil.09 | 56.25 | 02.56 |
Fabr.00 | 62.50 | 02.88 |
Fabr.04 | 50.00 | 13.62 |
Fabr.07 | 81.25 | 01.44 |
Fabr.09 | 75.00 | 00.64 |
Fabr.11 | 81.25 | 02.40 |
Fabr.14 | 87.50 | 00.16 |
Fabr.15 | 87.50 | 02.08 |
Fabr.17 | 87.50 | 03.05 |
Fabr.18 | 81.25 | 01.12 |
Flow.05 | 56.25 | 11.06 |
Food.00 | 93.75 | 02.56 |
Food.05 | 50.00 | 04.17 |
Food.08 | 75.00 | 00.48 |
Grass.01 | 50.00 | 07.85 |
Leav.08 | 75.00 | 16.03 |
Leav.10 | 56.25 | 14.58 |
Leav.11 | 62.50 | 06.89 |
Leav.12 | 43.75 | 04.81 |
Leav.16 | 75.00 | 02.56 |
Meta.00 | 68.75 | 02.72 |
Meta.02 | 87.50 | 00.64 |
Misc.02 | 68.75 | 00.96 |
Sand.00 | 62.50 | 03.37 |
Ston.01 | 62.50 | 13.94 |
Ston.04 | 68.75 | 03.53 |
Terr.10 | 68.75 | 16.35 |
Tile.01 | 37.50 | 04.17 |
Tile.04 | 68.75 | 02.08 |
Tile.07 | 31.25 | 0 |
Wate.05 | 81.25 | 07.69 |
Wood.01 | 93.75 | 24.20 |
Wood.02 | 75.00 | 15.22 |
6. Conclusions
Conflicts of Interest
References
- Korostelev, A.P.; Tsybakov, A.B. Minimax Theory of Image Reconstruction; Springer: New York, NY, USA, 1993. [Google Scholar]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 1978, 8, 460–473. [Google Scholar] [CrossRef]
- Vasselle, B.; Giraudon, G. A multiscale regularity measure as a geometric criterion for image segmentation. Mach. Vision Appl. 1994, 7, 229–236. [Google Scholar] [CrossRef]
- Manjunath, B.S.; Ohm, J.; Vasudevan, V.V.; Yamada, A. Color and texture descriptors. IEEE Trans. Circuits Syst. Video Technol. 1998, 11, 703–715. [Google Scholar] [CrossRef]
- Chetverikov, D. Pattern regularity as a visual key. Image Vision Comput. 2000, 18, 975–985. [Google Scholar] [CrossRef]
- Fujii, K.; Sugi, S.; Ando, Y. Textural properties corresponding to visual perception based on the correlation mechanism in the visual system. Psychol. Res. 2003, 67, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, L.; Olague, G.; Legrand, P.; Lutton, E. Regularity based descriptor computed from local image oscillations. Opt. Express 2007, 15, 6140–6145. [Google Scholar] [CrossRef] [PubMed]
- Daugmann, J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 1985, 2, 1160–1169. [Google Scholar] [CrossRef]
- Liu, F.; Picard, R.W. Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 722–733. [Google Scholar] [CrossRef]
- Wang, J.Z.; Li, J.; Wiederhold, G. SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 947–963. [Google Scholar] [CrossRef]
- Stitou, Y.; Turcu, F.; Berthoumieu, Y.; Najim, M. Three-dimensional textured image blocks model based on wold decomposition. IEEE Trans. Signal Process. 2007, 55, 3247–3261. [Google Scholar] [CrossRef]
- Unser, M. Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 1995, 4, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Percival, D. Wavelet variance analysis for random fields on a regular lattice. IEEE Trans. Image Process. 2012, 21, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Geilhufe, M.; Percival, D.; Stern, H. Two-dimensional wavelet variance estimation with application to sea ice SAR images. Comput. Geosci. 2013, 54, 351–360. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano degli Attuari 1933, 4, 83–91. (in Italian). [Google Scholar]
- Arnold, V. Orbits’ statistics in chaotic dynamical systems. Nonlinearity 2008, 21, T109–T112. [Google Scholar] [CrossRef]
- Gurzadyan, V.G.; Kocharyan, A.A. Kolmogorov stochasticity parameter measuring the randomness in the cosmic microwave background. Astron. Astrophys. 2008, 492, L33–L34. [Google Scholar] [CrossRef]
- Atto, A.M.; Berthoumieu, Y. Wavelet packets of nonstationary random processes: Contributing factors for stationarity and decorrelation. IEEE Trans. Inf. Theory 2012, 58, 317–330. [Google Scholar] [CrossRef]
- Atto, A.M.; Pastor, D.; Mercier, G. Wavelet packets of fractional brownian motion: Asymptotic analysis and spectrum estimation. IEEE Trans. Inf. Theory 2010, 56, 4741–4753. [Google Scholar] [CrossRef] [Green Version]
- Atto, A.M.; Pastor, D. Central limit theorems for wavelet packet decompositions of stationary random processes. IEEE Trans. Signal Process. 2010, 58, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Massey, J.F.J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 253, 68–78. [Google Scholar] [CrossRef]
- Kenney, J.F.; Keeping, E.S. Mathematics of Statistics, Part II; Van Nostrand Company, Inc: Princeton, NJ, USA, 1951. [Google Scholar]
- Wickerhauser, M.V. Inria Lectures on Wavelet Packet Algorithms. In Problèmes Non-Linéaires Appliqués, Ondelettes et Paquets D’Ondes; Lions, P.-L., Ed.; INRIA: Roquencourt, France, 1991; pp. 31–99. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphie, PA, USA, 1992. [Google Scholar]
- Coifman, R.R.; Wickerhauser, M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38, 713–718. [Google Scholar] [CrossRef]
- Hess-Nielsen, N.; Wickerhauser, M.V. Wavelets and time-frequency analysis. Proc. IEEE 1996, 84, 523–540. [Google Scholar] [CrossRef]
- Laine, A.; Fan, J. Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 1186–1191. [Google Scholar] [CrossRef]
- Chang, T.; Kuo, C.-C.J. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 1993, 2, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Peyré, G. Best basis compressed sensing. IEEE Trans. Signal Process. 2010, 58, 2613–2622. [Google Scholar] [CrossRef]
- Eakins, J.; Graham, M. Content-Based Image Retrieval; Technical Report; University of Northumbria: Newcastle, UK, 1999. [Google Scholar]
- Atto, A.M.; Berthoumieu, Y. How to Perform Texture Recognition from Stochastic Modeling in the Wavelet Domain. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4320–4323.
- Liu, Y.; Zhang, D.; Lu, G.; Ma, W.-Y. A survey of content-based image retrieval with high-level semantics. Pattern Recognit. 2007, 40, 262–282. [Google Scholar] [CrossRef]
- Smeulders, A.W.M.; Worring, M.; Gupta, A.; Jain, R. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1349–1380. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Atto, A.M.; Berthoumieu, Y.; Mégret, R. Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases. Entropy 2013, 15, 4782-4801. https://doi.org/10.3390/e15114782
Atto AM, Berthoumieu Y, Mégret R. Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases. Entropy. 2013; 15(11):4782-4801. https://doi.org/10.3390/e15114782
Chicago/Turabian StyleAtto, Abdourrahmane M., Yannick Berthoumieu, and Rémi Mégret. 2013. "Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases" Entropy 15, no. 11: 4782-4801. https://doi.org/10.3390/e15114782
APA StyleAtto, A. M., Berthoumieu, Y., & Mégret, R. (2013). Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases. Entropy, 15(11), 4782-4801. https://doi.org/10.3390/e15114782