1. Introduction
State estimation theory has been regarded as an important research area in modern control systems. In particularly, the appearance of the Kalman filtering theory in the last century had a profound influence on modern optimal control [
1,
2,
3]. Kalman filter algorithm is based on the minimum variance estimation for the linear Gaussian systems. However, the noises in real systems may be non-Gaussian; and even for a nonlinear system with Gaussian noises, the system output could be a non-Gaussian variable. In these cases, Kalman filter may lead to poor estimation.
Some attempts have been made at studying filtering algorithms for nonlinear systems with non-Gaussian noises. The existed methodologies to design filters for nonlinear non-Gaussian systems can be classified into three kinds: analytical approach, simulation-based approach and adaptive approach.
Analytical approaches to filtering for nonlinear non-Gaussian systems were investigated in [
4,
5,
6,
7]. In [
4,
5], nonlinear non-Gaussian systems were described by combining an improved square-root B-spline model with a further nonlinear dynamic model. Once B-spline expansions have been made for probability density functions (PDFs), further modeling was still needed to reveal the relationship between the input and the weights related to the PDFs, a nonlinear filter was then constructed by minimizing the error between the measured output PDF and estimated output PDF. Although the proposed filter is suitable to nonlinear non-Gaussian systems, the output PDF should be measureable. Moreover, it is not easy to build the state space expression of the weights related to the PDFs in practical systems. The filter for a class of multivariate dynamic stochastic systems with non-Gaussian stochastic input and nonlinear output was investigated in [
6] and [
7] respectively. In [
6], a new formulation of the residual PDF was made to link the residual PDF to the gain matrix of the filter, and the optimal filtering gain matrix was then solved by minimizing the entropy of the residual. The minimum entropy filter in [
6] presented a good performance in reducing the randomness of the filter residual, and was more general and suited for non-Gaussian systems. However, minimum entropy criterion may not guarantee that the estimation errors approach to zero. In [
7], following the minimum information divergence criterion, a hybrid characteristic function of the conditional estimation error was introduced to construct the performance index of the tracking filter. An analytical solution of the filter gain matrix was then obtained so that the PDFs of the filtering error can follow a target distribution shape. Nevertheless, it is a little complicated to calculate the analytical solution.
There are two types of simulation-based approaches to filtering for nonlinear non-Gaussian systems: numerical integration and sequential Monte Carlo. Although the filtering problem can be tackled using numerical integration [
8,
9], it is difficult to implement when the dimension of the state vector is higher. Sequential Monte Carlo simulation [
10,
11,
12,
13,
14,
15], which is also named particle filtering strategy, has shown its great advantages to deal with filtering problems for nonlinear non-Gaussian systems. Nevertheless, there are still many issues to be solved, for example, (1) random sampling may bring the accumulation of Monte Carlo error and even lead to filter divergence; (2) a large number of particles are needed to avoid degradation and to improve the estimation accuracy, which makes the calculation a sharp increase.
Adaptive approaches have been also investigated for solving filtering problem in nonlinear non-Gaussian systems in last decades. Since minimum error entropy criterion ensures that the estimation error has small uncertainty, it was used for supervised training of nonlinear stochastic system in [
16,
17]. However, entropy does not change with the mean of the distribution, the algorithm may not yield zero-mean error. Therefore, the result may be corrected by properly modifying the bias of the output processing element of the neural networks. Maximum mutual information criterion was proposed for adaptive filtering in [
18], this criterion is robust to measure distortions. Nevertheless, the maximum mutual information criterion leads to non-unique optimum solution. It is necessary to use a priori information about the unknown system in order to obtain unique solution.
In general, the filtering problem for nonlinear non-Gaussian systems calls for further investigation. The filtering problem addressed here is solved by combining the improved performance index with optimal design method.
Entropy is a natural extension beyond mean square error because it is a function of PDF. One of the most important problems for minimum entropy filtering is the formulation of the PDF of estimation error. For continuous nonlinear systems, the classical Liouville equation and its Dostupov-Pugachev extension have been used to obtain the PDF of the concerned stochastic variable. However, it is very difficult to have their analytical/numerical solutions due to high-dimensional partial differential equations. From the viewpoint of the random event description of the principle of preservation of probability, the generalized density evolution equation was developed in [
19]. Different from the traditional density evolution equations, the dimensions of the generalized density evolution equation just depend on the necessary physical quantities' dimensions not the whole original systems itself, which makes the dimensions of the partial differential equations much lower. Some application results (see e.g., [
20,
21]) illustrated the efficiency and conveniences of the formulated density evolution equation.
The contribution of this paper is to develop a new filtering strategy for multivariable nonlinear systems with non-Gaussian disturbances by utilizing a novel performance index which contains the entropy of estimation error, square error and constraints on gain matrix of the filter. A novel approach, which uses the principle of preservation of probability, is presented here to formulate the joint PDF evolution equation of the estimation errors. The PDF evolution equation explicitly reveals the relationship among the estimation errors of the filter, filter gain and random inputs. In addition, the entropy of estimation errors in the performance index is replaced by its information potential presented in [
16,
17] so as to simplify the calculation of the entropy. The filter gain matrix for nonlinear non-Gaussian systems is then designed by minimizing the proposed performance index. This filtering algorithm yields to the estimation errors which not only have small uncertainty but also approach to zero. Finally, the exponentially boundedness in the mean square sense is analyzed for the estimation error dynamics.
This paper is organized as follows: in
section 2, the state-space model of a nonlinear non-Gaussian system and the structure of filter are built to formulate the filtering problem. The joint PDF evolution of estimation errors is formulated in
Section 3 so as to calculate the entropy of estimation errors. The filtering algorithm is proposed in
Section 4 by minimizing the improved entropy criterion and the exponentially mean-square boundedness condition for error systems is provided. Comparative simulation results are given to illustrate the efficiency and validity of the proposed method in
Section 5. Conclusions are drawn in
Section 6.
Notation. ℜ
n and ℜ
n×m denote the n-dimensional Euclidean space and the set of all
n × m real matrices respectively. The superscript “
T” denotes the transpose. If
A is a matrix,
λmax (·) and
λmin (·) represent the largest and smallest eigenvalue of
A respectively. E(·) stands for the mathematical expectation of random variables.
3. Formulation for the Joint PDF of Error
In most cases, Equation (3) is a well-posed equation, and the error vector
e(
t) can be determined uniquely. It may be assumed to be:
At the present stage, the explicit expression of
H(·) is not requisite, and the sufficient condition just needs to know its existence and uniqueness. The derivative of
e(
t) can be assumed to take the form:
It is observed that all the randomness involved in this error dynamics comes from noises
ω and
υ, thus, the augmented system (
e(
t),
ω,
υ) is probability preserved. In other words, from the random event description of the principle of preservation of probability, it leads to:
where Ω
e, Ω
ω and Ω
υ are the distribution domains of
e,
ω and
υ, respectively;
is the joint PDF of (
e(
t),
ω,
υ). It follows from Equation (7) that:
Combining Equation (7) with Equation (8) and considering the arbitrariness of
, it yields:
where Equation (6) and Equation (9) are the generalized density evolution equation (GDEE) for (
e(
t),
ω,
υ). The corresponding instantaneous PDF of (
e(
t)) can be obtained by solving a family of partial differential equations with the following given initial condition:
where
δ(·) is the Dirac-Delta function; and
is deterministic initial value of (
e(
t)). Then, we have:
where the joint PDF
is the solution of (8), which can be obtained according to the method presented in [
22].
5. Simulation Results
In order to show the applicability of the proposed filtering algorithm, we consider the following nonlinear system represented as :
where
and
. The random disturbances
ω and
υ obey non-Gaussian, and their distributions are shown in
Figure 1. The weights in Equation (14) are selected as
R1 = 10,
R2 = 2 and
R3 = 10, respectively. The simulation results based on the MEE filter are shown in
Figure 2,
Figure 3,
Figure 4,
Figure 5,
Figure 6,
Figure 7a and
Figure 8a). And the comparative results between MEE filter and UKF are shown in
Figure 7 and
Figure 8.
Figure 2 demonstrates that the performance index decreases monotonically with time. In
Figure 3 and
Figure 4, both the range and PDFs of errors are given, it can be seen that the shapes of PDFs of the tracking errors become narrower and sharper along with the increasing time, which illustrates the dispersions of estimation errors can be reduced. In order to clarify the improvements, the initial and final PDFs are shown in
Figure 5 and
Figure 6. It can be shown from
Figure 3,
Figure 4,
Figure 5 and
Figure 6 that the proposed improved MEE filter can decrease the uncertainties of the estimation errors and drive the estimation errors approaching to zero.
Figure 7 shows that both the MEE filter and UKF make the estimation errors approach to zero. But the estimation errors in a are more closer to zero with smaller randomness. The variances of the filter gains in two cases are presented in
Figure 8. It can be seen that the gains of UKF are not convergent.
From the above analyses, it is obvious that the proposed strategy has better performance than UKF. Therefore, the proposed MEE filter is more suitable for nonlinear stochastic systems with non-Gaussian noises.
Figure 1.
Distribution of random noises ω and υ
Figure 1.
Distribution of random noises ω and υ
Figure 2.
Performance index.
Figure 2.
Performance index.
Figure 3.
PDF of estimation error e1
Figure 3.
PDF of estimation error e1
Figure 4.
PDF of estimation error e2.
Figure 4.
PDF of estimation error e2.
Figure 5.
Initial and final PDFs of e1
Figure 5.
Initial and final PDFs of e1
Figure 6.
Initial and final PDFs of e2
Figure 6.
Initial and final PDFs of e2
Figure 7.
Estimation errors under the filter: (a) MEE filter (b) UKF.
Figure 7.
Estimation errors under the filter: (a) MEE filter (b) UKF.
Figure 8.
Filter gain: (a) MEE filter (b) UKF.
Figure 8.
Filter gain: (a) MEE filter (b) UKF.