An Energetic Analysis of the Phase Separation in Non-Ionic Surfactant Mixtures: The Role of the Headgroup Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cloud Point Temperatures
2.2. Thermodynamic Parameters at the Cloud Point
2.3. Enthalpy-Entropy Compensation
2.4. Changes in the Molar Heat Capacity
3. Experimental Section
3.1. Materials
3.2. Method
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Myers, D. Surfactant Science and Technology, 2nd ed.; VCH Weinheim: New York, NY, USA, 1992; pp. 1–79. [Google Scholar]
- Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution, 2nd ed.; John Wiley & Sons Ltd: Chichester, UK, 2003; pp. 97–118. [Google Scholar]
- Evans, D.F.; Wennerström, H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd ed.; Wiley–VCH: Weinheim, Germany, 1999; pp. 153–216. [Google Scholar]
- Mukherjee, P.; Padhan, S.K.; Dash, S.; Patel, S.; Mishra, B.K. Clouding behavior in surfactant systems. Adv. Colloid Interface Sci 2011, 162, 59–79. [Google Scholar]
- Nazar, M.F.; Shah, S.S.; Eastoe, J.; Khan, A.M.; Shah, A. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures. J. Colloid Interface Sci 2011, 363, 490–496. [Google Scholar]
- Alam, M.S.; Mandal, A.; Mandal, A.B. Effect of KCl on the micellization and clouding phenomenon of the amphiphilic phenothiazine drug promethazine hydrochloride: Some thermodynamic properties. J. Chem. Eng. Data 2011, 56, 1540–1546. [Google Scholar]
- Molina-Bolívar, J.A.; Carnero Ruiz, C. Micellar size and phase behavior in n-octyl-beta-d-thioglucoside/ Triton X-100 mixtures: The effect of NaCl addition. Fluid Phase Equilibria 2012, 327, 58–64. [Google Scholar]
- Molina-Bolívar, J.A.; Hierrezuelo, J.M.; Carnero Ruiz, C. Energetics of clouding and size effects in non-ionic surfactant mixtures: The influence of alkyl chain length and NaCl addition. J. Chem. Thermodyn 2013, 57, 59–66. [Google Scholar]
- Söderman, O.; Johansson, I. Polyhydroxyl-based surfactants and their physico-chemical properties and applications. Curr. Opin. Colloid Interface Sci 2000, 4, 391–401. [Google Scholar]
- Stubenrauch, C. Sugar surfactants—Aggregation, interfacial, and adsorption phenomena. Curr. Opin. Colloid Interfac. Sci 2001, 6, 160–170. [Google Scholar]
- Carnero Ruiz, C. (Ed.) Sugar-Based Surfactants: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2009.
- Gu, T.; Galera-Gomez, P.A. The effect of different alcohols and other polar organic additives on the cloud point of Triton X-100 in water. Colloids Surf. A 1999, 147, 365–370. [Google Scholar]
- Zhang, R.; Zhang, L.; Somasundaran, P. Study of mixtures of n-dodecyl-β-d-maltoside with anionic, cationic and nonionic surfactant in aqueous solutions using surface tension and fluorescence techniques. J. Colloid Interface Sci 2004, 278, 453–460. [Google Scholar]
- Goyal, P.S.; Menon, S.V.; Dasannacharya, B.A.; Thiyagarajan, P. Small-angle neutron-scattering study of micellar structure and interparticle interactions in Triton X-100 solutions. Phys. Rev. E 1995, 51, 2308–2315. [Google Scholar]
- Abel, S.; Dupradeau, F.Y.; Raman, E.P.; MacKerell, A.D.; Marchi, M. Molecular simulations of dodecyl-β-maltoside micelles in water: Influence of the headgroup conformation and force field parameters. J. Phys. Chem. B 2011, 115, 487–499. [Google Scholar]
- Shinoda, K.; Carlsson, A.; Lindman, B. On the importance of hydroxyl groups in the polar head-group of nonionic surfactants and membrane liquids. Adv. Colloid Interface Sci 1996, 64, 253–271. [Google Scholar]
- Okawauchi, M.; Hagio, M.; Ikawa, Y.; Sugihara, G.; Murata, Y.; Tanaka, M. A light-scattering study of temperatura effect on micelle formation of n-alkanoyl-n-methylglucamines in aqueous-solution. Bull. Chem. Soc. Jpn 1987, 60, 2718–2725. [Google Scholar]
- Alam, M.S.; Naqvi, A.Z.; Kabir-ud-Din. Influence of additives on the clouding phenomenon of chlorpromazine hydrochloride solutions. Colloids Surf. B 2008, 63, 122–128. [Google Scholar]
- Curbelo, F.; Garnica, A.; Neto, E. Salinity effect in cloud point phenomena by nonionic surfactants used in enhanced oil recovery tests. Pet. Sci. Technol 2013, 31, 1544–1552. [Google Scholar]
- Batigöc, C.; Akbas, H.; Boz, M. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point. J. Chem. Thermodyn 2011, 43, 1800–1803. [Google Scholar]
- Darshak, B.; Kalpana, C.M.; Jigisha, P. Studies on surfactant-ionic liquid interaction on clouding behavior and evaluation of thermodynamic parameters. J. Surfactants Deterg 2013, 16, 547–557. [Google Scholar]
- DeGiorgio, V.; Piazza, R.; Corti, M.; Minero, C. Critical properties of nonionic micellar solutions. J. Chem. Phys 1985, 82, 1025–1031. [Google Scholar]
- Van Bommel, A.; Palepu, R.M. n-Alkanol induced clouding of Brij 56 and the energetics of the process. Colloids Surf. A 2004, 233, 109–115. [Google Scholar]
- Sanan, R.; Mahajan, R.K. Polyethylene glycol assisted micellar, interfacial and phase separation studies of triblock copolymer-nonionic surfactant mixtures. Colloids Surf. A 2013, 433, 145–153. [Google Scholar]
- Inoue, T.; Ohmura, H.; Murata, D. Cloud point temperature of polyoxyethylene-type nonionic surfactants and their mixtures. J. Colloid Interface Sci 2003, 258, 374–382. [Google Scholar]
- Kundu, K.; Bidyut, K.P. Interfacial composition, thermodynamic properties and structural parameters of water-in-oil microemulsions stabilized by 1-pentanol and mixed anionic + polyoxyethylene type nonionic surfactants. Colloid Polym. Sci 2013, 291, 613–632. [Google Scholar]
- Hejri, A.; Gharanjig, K.; Khosravi, A.; Hejazi, M. Effect of surfactants on kinetics of β-carotene photodegradation in emulsions. Chem. Eng. Commun 2013, 200, 437–447. [Google Scholar]
- Fei, L.; Lijuan, S.; Yingqiu, G.; Xiujie, Y.; Liqiang, Z. Aggregation behavior of alkyl triphenyl phosphonium bromides in aprotic and protic ionic liquids. Colloid Polym. Sci 2013, 291, 2375–2384. [Google Scholar]
- Liu, L.; Guo, Q.X. Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem. Rev 2001, 101, 673–696. [Google Scholar]
- Battistuzzi, G.; Bellei, M.; Borsari, M.; Canters, G.W.; Waals, E.; Jeuken, L.J.C.; Ranieri, A.; Sola, M. Control of metalloprotein reduction potential: Compensation phenomena in the reduction thermodynamics of blue copper proteins. Biochemistry 2003, 42, 9214–9220. [Google Scholar]
- Lumry, R.; Rajender, S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: A ubiquitous properly of water. Biopolymers 1970, 9, 1125–1227. [Google Scholar]
- Sharp, K. Entropy-enthalpy compensation: Fact or artifact? Protein Sci 2001, 10, 661–667. [Google Scholar]
- Exner, O. Statistics of the enthalpy-entropy relationship. III. Processing of calorimetric data. Collect. Czech. Chem. Commun 1973, 38, 799–812. [Google Scholar]
- Wei, D.; Kang, L.; Xiaojun, L.; Huoxin, L.; Chongfu, L.; Tao, Y.; Guangmiao, Q. Micellization behavior of ionic liquid surfactants with two hydrophobic tail chains in aqueous solution. J. Appl. Polym. Sci 2013, 129, 2057–2062. [Google Scholar]
- Chen, L.J.; Lin, S.Y.; Huang, C.C.; Chen, E.M. Temperature dependence of critical micelle concentration of polyoxyethylene non-ionic surfactants. Colloid Surf. A 1998, 135, 175–181. [Google Scholar]
- Chen, L.J.; Lin, S.Y.; Huang, C.C.; Chen, E.M. Effect of hydrophobic chain length of surfactants on enthalpy-entropy compensation of micellization. J. Phys. Chem 1998, 102, 4350–4356. [Google Scholar]
- Kaushal, D.; Rana, D.S.; Chauhan, M.S.; Umar, A.; Chauhan, S. The effect of sodium dodecyl sulphate on Furosemide-A cardiovascular drug in water-methanol at different temperature. J. Mol. Liq 2013, 188, 237–244. [Google Scholar]
- Hoque, M.A.; Hossain, M.D.; Khan, M.A. Interaction of cephalosporin drugs with dodecylmethy-lammonium bromide. J. Chem. Thermodyn 2013, 63, 135–141. [Google Scholar]
- Majhi, P.R.; Blume, A. Thermodynamic characterization of temperature-induced micellization and demicellization of detergents studied by differential scanning calorimetry. Langmuir 2001, 17, 3844–3851. [Google Scholar]
- Tsui, H.W.; Hsu, Y.H.; Wang, J.H.; Chen, L.J. Novel behavior of heat of micellization of Pluronics F68 and F88 in aqueous solutions. Langmuir 2008, 24, 13858–13862. [Google Scholar]
- Armstrong, J.K.; Leharne, S.A.; Stuart, B.H.; Snowden, M.J.; Chowdhry, B.Z. Phase transition properties of poly(ethylene oxide) in aqueous solutions of sodium chloride. Langmuir 2001, 17, 4482–4485. [Google Scholar]
- Armstrong, J.K.; Chowdhry, B.Z.; Snowden, M.J.; Leharne, S.A. Effect of sodium chloride upon micellization and phase separation transitions in aqueous solutions of triblock copolymers: A high-sensitivity differential scanning calorimetry study. Langmuir 1998, 14, 2004–2010. [Google Scholar]
- Armstrong, J.K.; Chowdhry, B.Z.; O’Brien, R.; Beezer, A.; Mitchell, J.; Leharne, S.A. Scanning microcalorimetric investigations of phase transitions in dilute aqueous solutions of poly(oxypropylene). J. Phys. Chem 1995, 99, 4590–4598. [Google Scholar]
- Vamvaca, K.; Jelesarov, I.; Hilvert, D. Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J. Mol. Biol 2008, 383, 971–977. [Google Scholar]
C10G2/Ethoxylated Surfactant | MEGA-10/Ethoxylated Surfactant | ||||||
---|---|---|---|---|---|---|---|
αC10E5 | Δ (K) | αC10E6 | Δ (K) | αC10E5 | Δ (K) | αC10E6 | Δ (K) |
1 | −11.1 | 1 | −14.7 | 1 | −11.1 | 1 | −14.7 |
0.8 | −14.3 | 0.8 | −18.8 | 0.8 | −11.5 | 0.8 | −15.9 |
0.6 | −18.4 | 0.6 | −25.9 | 0.6 | −13.0 | 0.6 | −20.1 |
0.4 | −13.7 | 0.4 | −26.2 |
C10G2/C10E5 | C10G2/C10E6 | ||||||
---|---|---|---|---|---|---|---|
[NaCl] (M) | α2 | (kJ/mol) a | (kJ/mol) b | (kJ/mol) c | (kJ/mol) a | (kJ/mol) b | (kJ/mol) c |
0 | 1 | 20.6 | −10.5 | −31.1 | 20.9 | −11.1 | −32.0 |
0.8 | 22.2 | −11.5 | −33.7 | 22.4 | −12.1 | −34.5 | |
0.6 | 24.7 | −13.3 | −38.0 | 24.9 | −14.0 | −38.9 | |
1 | 1 | 20.0 | −11.9 | −31.9 | 20.0 | −14.4 | −34.4 |
0.8 | 21.2 | −12.8 | −34.0 | 21.2 | −15.3 | −36.5 | |
0.6 | 23.5 | −14.6 | −38.1 | 23.2 | −17.1 | −40.3 |
MEGA-10/C10E5 | MEGA-10/C10E6 | ||||||
---|---|---|---|---|---|---|---|
[NaCl] (M) | α2 | (kJ/mol) a | (kJ/mol) b | (kJ/mol) c | (kJ/mol) a | (kJ/mol) b | (kJ/mol) c |
0 | 1 | 20.6 | −14.0 | −34.6 | 20.9 | −14.8 | −35.7 |
0.8 | 21.9 | −14.9 | −36.8 | 22.1 | −15.6 | −37.7 | |
0.6 | 23.9 | −16.5 | −40.4 | 24.1 | −17.3 | −41.4 | |
0.4 | 26.9 | −19.1 | −46.0 | 27.1 | −20.0 | −47.1 | |
1 | 1 | 19.9 | −13.7 | −33.6 | 20.0 | −17.6 | −37.6 |
0.8 | 21.2 | −14.6 | −35.8 | 21.1 | −18.4 | −39.5 | |
0.6 | 23.0 | −16.0 | −39.0 | 22.7 | −19.9 | −42.6 | |
0.4 | 25.9 | −18.6 | −44.5 | 25.2 | −22.4 | −47.6 |
Mixture | ΔCCP (kJ·mol−1·K−1) Water | ΔCCP (kJ·mol−1·K−1) 1M NaCl |
---|---|---|
MEGA-10/C10E5 | −0.097 ± 0.002 | −0.099 ± 0.002 |
MEGA-10/C10E6 | −0.101 ± 0.001 | −0.124 ± 0.001 |
C10G2/C10E5 | −0.072 ± 0.001 | −0.084 ± 0.001 |
C10G2/C10E6 | −0.075 ± 0.001 | −0.100 ± 0.001 |
Surfactant | Abbreviation | Manufacturer | Grade | Mass Fraction Purity |
---|---|---|---|---|
n-decyl-β-d-maltoside | C10G2 | Anatrace | Anagrade | ≥0.99 |
N-decanoyl-N-methylglucamide | MEGA-10 | Sigma-Aldrich | BioXtra | ≥0.99 |
Pentaoxyethylene monodecyl ether | C10E5 | Sigma-Aldrich | BioXtra | ≥0.98 |
Hexaoxyethylene monodecyl ether | C10E6 | Sigma-Aldrich | BioXtra | ≥0.98 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hierrezuelo, J.M.; Molina-Bolívar, J.A.; Ruiz, C.C. An Energetic Analysis of the Phase Separation in Non-Ionic Surfactant Mixtures: The Role of the Headgroup Structure. Entropy 2014, 16, 4375-4391. https://doi.org/10.3390/e16084375
Hierrezuelo JM, Molina-Bolívar JA, Ruiz CC. An Energetic Analysis of the Phase Separation in Non-Ionic Surfactant Mixtures: The Role of the Headgroup Structure. Entropy. 2014; 16(8):4375-4391. https://doi.org/10.3390/e16084375
Chicago/Turabian StyleHierrezuelo, José Manuel, José Antonio Molina-Bolívar, and Cristóbal Carnero Ruiz. 2014. "An Energetic Analysis of the Phase Separation in Non-Ionic Surfactant Mixtures: The Role of the Headgroup Structure" Entropy 16, no. 8: 4375-4391. https://doi.org/10.3390/e16084375