Fractal Structure and Entropy Production within the Central Nervous System
Abstract
:1. Introduction
2. CNS Fractal Spatial Structure
2.1. Aging
2.2. Epilepsy
2.3. Multiple Sclerosis
2.4. Alzheimer’s
2.5. Stroke
2.6. Cancer
3. CNS Temporal Fractal Structure
4. CNS Entropy Production
4.1. Aging
4.2. Epilepsy
4.3. Multiple Sclerosis
4.4. Alzheimer’s
4.5. Stroke
4.6. Cancer
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- West, B.J. Physiology in fractal dimensions: Error tolerance. Ann. Biomed. Eng 1990, 18, 135–149. [Google Scholar]
- Peng, C.K.; Mietus, J.; Hausdorff, J.M.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Long-range anticorrelations and non-gaussian behavior of the heartbeat. Phys. Rev. Lett 1993, 70, 1343–1346. [Google Scholar]
- Tibby, S.M.; Frndova, H.; Durward, A.; Cox, P.N. Novel method to quantify loss of heart rate variability in pediatric multiple organ failure. Crit. Care Med 2003, 31, 2059–2067. [Google Scholar]
- Scafetta, N.; Moon, R.E.; West, B.J. Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases. Complexity 2007, 12, 12–17. [Google Scholar]
- Goldberger, A.L. Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside. Lancet 1996, 347, 1312–1314. [Google Scholar]
- Havlin, S.; Buldyrev, S.V.; Goldberger, A.L.; Mantegna, R.N.; Ossadnik, S.M.; Peng, C.K.; Simons, M.; Stanley, H.E. Fractals in biology and medicine. Chaos Solitons Fractals 1995, 6, 171–201. [Google Scholar]
- Peng, C.K.; Hausdorff, J.M.; Havlin, S.; Mietus, J.E.; Stanley, H.E.; Goldberger, A.L. Multiple-time scales analysis of physiological time series under neural control. Physica A 1998, 249, 491–500. [Google Scholar]
- Stanley, H.E.; Buldyrev, S.V.; Goldberger, A.L.; Goldberger, Z.D.; Havlin, S.; Mantegna, R.N.; Ossadnik, S.M.; Peng, C.K.; Simons, M. Statistical mechanics in biology: How ubiquitous are long-range correlations? Physica A 1994, 205, 214–253. [Google Scholar]
- Atkins, P. The Second Law; Scientific American Library Scientific American Books: New York, NY, USA, 1984. [Google Scholar]
- Lambert, F.L. Disorder—A cracked crutch for supporting entropy discussions. J. Chem. Educ 2002, 79. [Google Scholar] [CrossRef]
- Schneider, E.D.; Sagan, D. Into the Cool: Energy Flow, Thermodynamics and Life; University of Chicago Press: Chicago, IL, USA, 2005; p. 378. [Google Scholar]
- Schrödinger, E. What Is life? Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Aoki, I. Min-max principle of entropy production with time in aquatic communities. Ecol. Complex 2006, 3, 56–63. [Google Scholar]
- Seely, A.J.; Macklem, P. Fractal variability: An emergent property of complex dissipative systems. Chaos 2012, 22. [Google Scholar] [CrossRef]
- Di Ieva, A.; Esteban, F.J.; Grizzi, F.; Klonowski, W.; Martin-Landrove, M. Fractals in the neurosciences, part ii: Clinical applications and future perspectives. Neuroscientist 2013. [Google Scholar] [CrossRef]
- Di Ieva, A.; Grizzi, F.; Jelinek, H.; Pellionisz, A.J.; Losa, G.A. Fractals in the neurosciences, part i: General principles and basic neurosciences. Neuroscientist 2013, 20, 403–417. [Google Scholar]
- Preissl, H.; Lutzenberger, W.; Pulvermuller, F.; Birbaumer, N. Fractal dimensions of short eeg time series in humans. Neurosci. Lett 1997, 225, 77–80. [Google Scholar]
- Larsen, P.D.; Elder, D.E.; Tzeng, Y.C.; Campbell, A.J.; Galletly, D.C. Fractal characteristics of breath to breath timing in sleeping infants. Respir. Physiol. Neurobiol 2004, 139, 263–270. [Google Scholar]
- Perkiomaki, J.S.; Makikallio, T.H.; Huikuri, H.V. Fractal and complexity measures of heart rate variability. Clin. Exp. Hypertens 2005, 27, 149–158. [Google Scholar]
- West, B.J.; Griffin, L.A.; Frederick, H.J.; Moon, R.E. The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions. Respir. Physiol. Neurobiol 2005, 145, 219–233. [Google Scholar]
- Hofman, M.A. The fractal geometry of convoluted brains. J. Hirnforsch 1991, 32, 103–111. [Google Scholar]
- Majumdar, S.; Prasad, R. The fractal dimension of cerebral surfaces using magnetic resonsance imaging. Comput. Phys 1988, 2, 69–73. [Google Scholar]
- Free, S.L.; Sisodiya, S.M.; Cook, M.J.; Fish, D.R.; Shorvon, S.D. Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. Cereb. Cortex 1996, 6, 830–836. [Google Scholar]
- Cook, M.J.; Free, S.L.; Manford, M.R.; Fish, D.R.; Shorvon, S.D.; Stevens, J.M. Fractal description of cerebral cortical patterns in frontal lobe epilepsy. Eur. Neurol 1995, 35, 327–335. [Google Scholar]
- Kiselev, V.G.; Hahn, K.R.; Auer, D.P. Is the brain cortex a fractal? Neuroimage 2003, 20, 1765–1774. [Google Scholar]
- Milosevic, N.T.; Ristanovic, D. Fractality of dendritic arborization of spinal cord neurons. Neurosci. Lett 2006, 396, 172–176. [Google Scholar]
- Bullmore, E.; Brammer, M.; Harvey, I.; Persaud, R.; Murray, R.; Ron, M. Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: A controlled study of schizophrenic and manic-depressive patients. Psychol. Med 1994, 24, 771–781. [Google Scholar]
- Zhang, L.; Dean, D.; Liu, J.Z.; Sahgal, V.; Wang, X.; Yue, G.H. Quantifying degeneration of white matter in normal aging using fractal dimension. Neurobiol. Aging 2007, 28, 1543–1555. [Google Scholar]
- Zhang, L.; Liu, J.Z.; Dean, D.; Sahgal, V.; Yue, G.H. A three-dimensional fractal analysis method for quantifying white matter structure in human brain. J. Neurosci. Methods 2006, 150, 242–253. [Google Scholar]
- Mandelbrot, B. The Fractal Geometry of Nature; French edition published in 1975; Freeman: New York, NY, USA, 1982. [Google Scholar]
- Smith, T.G., Jr.; Marks, W.B.; Lange, G.D.; Sheriff, W.H., Jr.; Neale, E.A. A fractal analysis of cell images. J. Neurosci. Methods 1989, 27, 173–180. [Google Scholar]
- Caserta, F.; Eldred, W.D.; Fernandez, E.; Hausman, R.E.; Stanford, L.R.; Bulderev, S.V.; Schwarzer, S.; Stanley, H.E. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J. Neurosci. Methods 1995, 56, 133–144. [Google Scholar]
- Fernandez, E.; Jelinek, H.F. Use of fractal theory in neuroscience: Methods, advantages, and potential problems. Methods 2001, 24, 309–321. [Google Scholar]
- Nezadal, M.; Zmeskal, O.; Buchnicek, M. The box-counting critical study. Proceedings of the 4th Conference on Predicition, Synergetic and More, Zlin, Tomas Bata University, Czech Republic, 25–26 October 2001; pp. 18–24.
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar]
- Ashburner, J.; Friston, K.J. Voxel-based morphometry—The methods. Neuroimage 2000, 11, 805–821. [Google Scholar]
- Waliszewski, P.; Konarski, J. Neuronal differentiation and synapse formation occur in space and time with fractal dimension. Synapse 2002, 43, 252–258. [Google Scholar]
- Goni, J.; Sporns, O.; Cheng, H.; Aznarez-Sanado, M.; Wang, Y.; Josa, S.; Arrondo, G.; Mathews, V.P.; Hummer, T.A.; Kronenberger, W.G.; et al. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: Optimization and reproducibility. Neuroimage 2013, 83C, 646–657. [Google Scholar]
- Shyu, K.K.; Wu, Y.T.; Chen, T.R.; Chen, H.Y.; Hu, H.H.; Guo, W.Y. Measuring complexity of fetal cortical surface from mr images using 3-d modified box-counting method. IEEE Trans. Instrum. Meas 2011, 60, 522–531. [Google Scholar]
- Wu, Y.T.; Shyu, K.K.; Chen, T.R.; Guo, W.Y. Using three-dimensional fractal dimension to analyze the complexity of fetal cortical surface from magnetic resonance images. Nonlinear Dyn 2009, 58, 745–752. [Google Scholar]
- Blanton, R.E.; Levitt, J.G.; Thompson, P.M.; Narr, K.L.; Capetillo-Cunliffe, L.; Nobel, A.; Singerman, J.D.; McCracken, J.T.; Toga, A.W. Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Res 2001, 107, 29–43. [Google Scholar]
- King, R.D.; George, A.T.; Jeon, T.; Hynan, L.S.; Youn, T.S.; Kennedy, D.N.; Dickerson, B. Characterization of atrophic changes in the cerebral cortex using fractal dimensional analysis. Brain Imaging Behav 2009, 3, 154–166. [Google Scholar]
- Takahashi, T.; Murata, T.; Omori, M.; Kosaka, H.; Takahashi, K.; Yonekura, Y.; Wada, Y. Quantitative evaluation of age-related white matter microstructural changes on mri by multifractal analysis. J. Neurol. Sci 2004, 225, 33–37. [Google Scholar]
- Mustafa, N.; Ahearn, T.S.; Waiter, G.D.; Murray, A.D.; Whalley, L.J.; Staff, R.T. Brain structural complexity and life course cognitive change. Neuroimage 2012, 61, 694–701. [Google Scholar]
- Esteban, F.J.; Sepulcre, J.; de Mendizabal, N.V.; Goni, J.; Navas, J.; de Miras, J.R.; Bejarano, B.; Masdeu, J.C.; Villoslada, P. Fractal dimension and white matter changes in multiple sclerosis. Neuroimage 2007, 36, 543–549. [Google Scholar]
- Esteban, F.J.; Sepulcre, J.; de Miras, J.R.; Navas, J.; de Mendizabal, N.V.; Goni, J.; Quesada, J.M.; Bejarano, B.; Villoslada, P. Fractal dimension analysis of grey matter in multiple sclerosis. J. Neurol Sci 2009, 282, 67–71. [Google Scholar]
- Sandu, A.L.; Rasmussen, I.A., Jr.; Lundervold, A.; Kreuder, F.; Neckelmann, G.; Hugdahl, K.; Specht, K. Fractal dimension analysis of mr images reveals grey matter structure irregularities in schizophrenia. Comput. Med. Imaging Graph 2008, 32, 150–158. [Google Scholar]
- King, R.D.; Brown, B.; Hwang, M.; Jeon, T.; George, A.T. Fractal dimension analysis of the cortical ribbon in mild alzheimer’s disease. Neuroimage 2010, 53, 471–479. [Google Scholar]
- Zhang, L.; Butler, A.J.; Sun, C.K.; Sahgal, V.; Wittenberg, G.F.; Yue, G.H. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function. Brain Res 2008, 1228, 229–240. [Google Scholar]
- Di Ieva, A.; Bruner, E.; Widhalm, G.; Minchev, G.; Tschabitscher, M.; Grizzi, F. Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas. Sci. Rep 2012, 2, 429. [Google Scholar]
- Di Ieva, A.; God, S.; Grabner, G.; Grizzi, F.; Sherif, C.; Matula, C.; Tschabitscher, M.; Trattnig, S. Three-dimensional susceptibility-weighted imaging at 7 t using fractal-based quantitative analysis to grade gliomas. Neuroradiology 2013, 55, 35–40. [Google Scholar]
- Ohri, S.; Dey, P.; Nijhawan, R. Fractal dimension in aspiration cytology smears of breast and cervical lesions. Anal. Quant. Cytol. Histol 2004, 26, 109–112. [Google Scholar]
- Tambasco, M.; Magliocco, A.M. Relationship between tumor grade and computed architectural complexity in breast cancer specimens. Hum. Pathol 2008, 39, 740–746. [Google Scholar]
- Dey, P.; Banik, T. Fractal dimension of chromatin texture of squamous intraepithelial lesions of cervix. Diagn. Cytopathol 2012, 40, 152–154. [Google Scholar]
- Streba, C.T.; Pirici, D.; Vere, C.C.; Mogoanta, L.; Comanescu, V.; Rogoveanu, I. Fractal analysis differentiation of nuclear and vascular patterns in hepatocellular carcinomas and hepatic metastasis. Rom. J. Morphol. Embryol 2011, 52, 845–854. [Google Scholar]
- Di Ieva, A.; Grizzi, F.; Ceva-Grimaldi, G.; Russo, C.; Gaetani, P.; Aimar, E.; Levi, D.; Pisano, P.; Tancioni, F.; Nicola, G.; et al. Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J. Anat 2007, 211, 673–680. [Google Scholar]
- Vidal, S.; Horvath, E.; Kovacs, K.; Lloyd, R.V.; Scheithauer, B.W. Microvascular structural entropy: A novel approach to assess angiogenesis in pituitary tumors. Endocr. Pathol 2003, 14, 239–247. [Google Scholar]
- Passalidou, E.; Trivella, M.; Singh, N.; Ferguson, M.; Hu, J.; Cesario, A.; Granone, P.; Nicholson, A.G.; Goldstraw, P.; Ratcliffe, C.; et al. Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas. Br. J. Cancer 2002, 86, 244–249. [Google Scholar]
- Pezzella, F.; Pastorino, U.; Tagliabue, E.; Andreola, S.; Sozzi, G.; Gasparini, G.; Menard, S.; Gatter, K.C.; Harris, A.L.; Fox, S.; et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am. J. Pathol 1997, 151, 1417–1423. [Google Scholar]
- Ribatti, D.; Vacca, A.; Dammacco, F. New non-angiogenesis dependent pathways for tumour growth. Eur. J. Cancer 2003, 39, 1835–1841. [Google Scholar]
- Wesseling, P.; van der Laak, J.A.; de Leeuw, H.; Ruiter, D.J.; Burger, P.C. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. J. Neurosurg 1994, 81, 902–909. [Google Scholar]
- Woyshville, M.J.; Calabrese, J.R. Quantification of occipital eeg changes in Alzheimer’s disease utilizing a new metric: The fractal dimension. Biol. Psychiatry 1994, 35, 381–387. [Google Scholar]
- Ahmadlou, M.; Adeli, H.; Adeli, A. Fractality and a wavelet-chaos-methodology for eeg-based diagnosis of alzheimer disease. Alzheimer Dis. Assoc. Disord 2011, 25, 85–92. [Google Scholar]
- Gomez, C.; Mediavilla, A.; Hornero, R.; Abasolo, D.; Fernandez, A. Use of the higuchi’s fractal dimension for the analysis of meg recordings from alzheimer’s disease patients. Med. Eng. Phys 2009, 31, 306–313. [Google Scholar]
- Bullmore, E.T.; Brammer, M.J.; Bourlon, P.; Alarcon, G.; Polkey, C.E.; Elwes, R.; Binnie, C.D. Fractal analysis of electroencephalographic signals intracerebrally recorded during 35 epileptic seizures: Evaluation of a new method for synoptic visualisation of ictal events. Electroencephalogr. Clin. Neurophysiol 1994, 91, 337–345. [Google Scholar]
- Yuan, Q.; Zhou, W.; Liu, Y.; Wang, J. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav 2012, 24, 415–421. [Google Scholar]
- Anokhin, A.P.; Birbaumer, N.; Lutzenberger, W.; Nikolaev, A.; Vogel, F. Age increases brain complexity. Electroencephalogr. Clin. Neurophysiol 1996, 99, 63–68. [Google Scholar]
- He, L.; Li, C.; Luo, Y.; Dong, W.; Yang, H. Clinical prognostic significance of heart abnormality and heart rate variability in patients with stroke. Neurol. Res 2010, 32, 530–534. [Google Scholar]
- McKenna, M.; Gruetter, R.; Sonnewald, U.; Waagepetersen, H.; Schousboe, A. Energy Metabolism in the Brain. In Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 7th ed.; Elsevier: London, UK, 2006; pp. 531–557. [Google Scholar]
- Sokoloff, L. Energetics of functional activation in neural tissues. Neurochem. Res 1999, 24, 321–329. [Google Scholar]
- Bouzier-Sore, A.K.; Voisin, P.; Bouchaud, V.; Bezancon, E.; Franconi, J.M.; Pellerin, L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: A comparative nmr study. Eur. J. Neurosci 2006, 24, 1687–1694. [Google Scholar]
- Petit-Taboue, M.C.; Landeau, B.; Desson, J.F.; Desgranges, B.; Baron, J.C. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 1998, 7, 176–184. [Google Scholar]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol 2006, 5, 64–74. [Google Scholar]
- Correia, S.C.; Santos, R.X.; Carvalho, C.; Cardoso, S.; Candeias, E.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I. Insulin signaling, glucose metabolism and mitochondria: Major players in Alzheimer’s disease and diabetes interrelation. Brain Res 2012, 1441, 64–78. [Google Scholar]
- Craft, S. Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol. Aging 2005, 26 Suppl 1, 65–69. [Google Scholar]
- Euser, S.M.; Sattar, N.; Witteman, J.C.; Bollen, E.L.; Sijbrands, E.J.; Hofman, A.; Perry, I.J.; Breteler, M.M.; Westendorp, R.G. A prospective analysis of elevated fasting glucose levels and cognitive function in older people: Results from prosper and the rotterdam study. Diabetes 2010, 59, 1601–1607. [Google Scholar]
- Aoki, I. Entropy principle for human development, growth and aging. J. Theor. Biol 1991, 150, 215–223. [Google Scholar]
- Aoki, I. Entropy production in living systems: From organisms to ecosystems. Thermochim. Acta 1995, 250, 359–370. [Google Scholar]
- Aoki, I. Entropy production in human life span: A thermodynamical measure for aging. Age 1994, 17, 29–31. [Google Scholar]
- Hawkins, S.; Wiswell, R. Rate and mechanism of maximal oxygen consumption decline with aging: Implications for exercise training. Sports Med 2003, 33, 877–888. [Google Scholar]
- Pardo, J.V.; Lee, J.T.; Sheikh, S.A.; Surerus-Johnson, C.; Shah, H.; Munch, K.R.; Carlis, J.V.; Lewis, S.M.; Kuskowski, M.A.; Dysken, M.W. Where the brain grows old: Decline in anterior cingulate and medial prefrontal function with normal aging. Neuroimage 2007, 35, 1231–1237. [Google Scholar]
- Shen, X.; Liu, H.; Hu, Z.; Hu, H.; Shi, P. The relationship between cerebral glucose metabolism and age: Report of a large brain pet data set. PLoS One 2012, 7, e51517. [Google Scholar]
- Theodore, W.H.; Bhatia, S.; Hatta, J.; Fazilat, S.; DeCarli, C.; Bookheimer, S.Y.; Gaillard, W.D. Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology 1999, 52, 132–136. [Google Scholar]
- Hajek, M.; Wieser, H.G.; Khan, N.; Antonini, A.; Schrott, P.R.; Maguire, P.; Beer, H.F.; Leenders, K.L. Preoperative and postoperative glucose consumption in mesiobasal and lateral temporal lobe epilepsy. Neurology 1994, 44, 2125–2132. [Google Scholar]
- Lamusuo, S.; Jutila, L.; Ylinen, A.; Kalviainen, R.; Mervaala, E.; Haaparanta, M.; Jaaskelainen, S.; Partanen, K.; Vapalahti, M.; Rinne, J. [18f]fdg-pet reveals temporal hypometabolism in patients with temporal lobe epilepsy even when quantitative mri and histopathological analysis show only mild hippocampal damage. Arch. Neurol 2001, 58, 933–939. [Google Scholar]
- Bakshi, R.; Miletich, R.S.; Kinkel, P.R.; Emmet, M.L.; Kinkel, W.R. High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J. Neuroimaging 1998, 8, 228–234. [Google Scholar]
- Blinkenberg, M.; Jensen, C.V.; Holm, S.; Paulson, O.B.; Sorensen, P.S. A longitudinal study of cerebral glucose metabolism, mri, and disability in patients with ms. Neurology 1999, 53, 149–153. [Google Scholar]
- Sun, X.; Tanaka, M.; Kondo, S.; Okamoto, K.; Hirai, S. Clinical significance of reduced cerebral metabolism in multiple sclerosis: A combined pet and mri study. Ann. Nucl. Med 1998, 12, 89–94. [Google Scholar]
- Derache, N.; Marie, R.M.; Constans, J.M.; Defer, G.L. Reduced thalamic and cerebellar rest metabolism in relapsing-remitting multiple sclerosis, a positron emission tomography study: Correlations to lesion load. J. Neurol. Sci 2006, 245, 103–109. [Google Scholar]
- Cunnane, S.; Nugent, S.; Roy, M.; Courchesne-Loyer, A.; Croteau, E.; Tremblay, S.; Castellano, A.; Pifferi, F.; Bocti, C.; Paquet, N.; et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011, 27, 3–20. [Google Scholar]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010, 9, 119–128. [Google Scholar]
- Mosconi, L.; de Santi, S.; Li, J.; Tsui, W.H.; Li, Y.; Boppana, M.; Laska, E.; Rusinek, H.; de Leon, M.J. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol. Aging 2008, 29, 676–692. [Google Scholar]
- Reiman, E.M.; Caselli, R.J.; Yun, L.S.; Chen, K.; Bandy, D.; Minoshima, S.; Thibodeau, S.N.; Osborne, D. Preclinical evidence of alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein e. N. Engl. J. Med 1996, 334, 752–758. [Google Scholar]
- Small, G.W.; Mazziotta, J.C.; Collins, M.T.; Baxter, L.R.; Phelps, M.E.; Mandelkern, M.A.; Kaplan, A.; la Rue, A.; Adamson, C.F.; Chang, L.; et al. Apolipoprotein e type 4 allele and cerebral glucose metabolism in relatives at risk for familial alzheimer disease. JAMA 1995, 273, 942–947. [Google Scholar]
- Minoshima, S.; Giordani, B.; Berent, S.; Frey, K.A.; Foster, N.L.; Kuhl, D.E. Metabolic reduction in the posterior cingulate cortex in very early alzheimer’s disease. Ann. Neurol 1997, 42, 85–94. [Google Scholar]
- Zhao, W.Q.; Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim. Biophys. Acta 2009, 1792, 482–496. [Google Scholar]
- Freidland, R.P.; Budinger, T.F.; Ganz, E.; Yano, Y.; Mathis, C.A.; Koss, B.; Ober, B.A.; Huesman, R.H.; Derenzo, S.E. Regional cerebral metabolic alterations in dementia of the alzheimer type: Positorn emission tomography with [1818] fluorodeoxyglucose. J. Comput. Assist. Tomogr 1983, 7, 590–598. [Google Scholar]
- Lewis, D.H.; Toney, L.K.; Baron, J.C. Nuclear medicine in cerebrovascular disease. Semin. Nucl. Med 2012, 42, 387–405. [Google Scholar]
- Serrati, C.; Marchal, G.; Rioux, P.; Viader, F.; Petit-Taboue, M.C.; Lochon, P.; Luet, D.; Derlon, J.M.; Baron, J.C. Contralateral cerebellar hypometabolism: A predictor for stroke outcome? J. Neurol. Neurosurg. Psychiatry 1994, 57, 174–179. [Google Scholar]
- Shih, W.J.; Huang, W.S.; Milan, P.P. F-18 fdg pet demonstrates crossed cerebellar diaschisis 20 years after stroke. Clin. Nucl. Med 2006, 31, 259–261. [Google Scholar]
- Metter, E.J.; Wasterlain, C.G.; Kuhl, D.E.; Hanson, W.R.; Phelps, M.E. Fdg positron emission computed tomography in a study of aphasia. Ann. Neurol 1981, 10, 173–183. [Google Scholar]
- Perani, D.; Vallar, G.; Cappa, S.; Messa, C.; Fazio, F. Aphasia and neglect after subcortical stroke. A clinical/cerebral perfusion correlation study. Brain 1987, 110, 1211–1229. [Google Scholar]
- Kwan, L.T.; Reed, B.R.; Eberling, J.L.; Schuff, N.; Tanabe, J.; Norman, D.; Weiner, M.W.; Jagust, W.J. Effects of subcortical cerebral infarction on cortical glucose metabolism and cognitive function. Arch. Neurol 1999, 56, 809–814. [Google Scholar]
- Kasenda, B.; Haug, V.; Schorb, E.; Fritsch, K.; Finke, J.; Mix, M.; Hader, C.; Weber, W.A.; Illerhaus, G.; Meyer, P.T. 18f-fdg pet is an independent outcome predictor in primary central nervous system lymphoma. J. Nucl. Med 2013, 54, 184–191. [Google Scholar]
- Kawai, N.; Miyake, K.; Yamamoto, Y.; Nishiyama, Y.; Tamiya, T. 18f-fdg pet in the diagnosis and treatment of primary central nervous system lymphoma. Biomed. Res. Int 2013, 2013, 247152. [Google Scholar]
- Kosaka, N.; Tsuchida, T.; Uematsu, H.; Kimura, H.; Okazawa, H.; Itoh, H. 18f-fdg pet of common enhancing malignant brain tumors. AJR Am. J. Roentgenol 2008, 190, W365–W369. [Google Scholar]
- Makino, K.; Hirai, T.; Nakamura, H.; Murakami, R.; Kitajima, M.; Shigematsu, Y.; Nakashima, R.; Shiraishi, S.; Uetani, H.; Iwashita, K.; et al. Does adding fdg-pet to mri improve the differentiation between primary cerebral lymphoma and glioblastoma? Observer performance study. Ann. Nucl. Med 2011, 25, 432–438. [Google Scholar]
- Palmedo, H.; Urbach, H.; Bender, H.; Schlegel, U.; Schmidt-Wolf, I.G.; Matthies, A.; Linnebank, M.; Joe, A.; Bucerius, J.; Biersack, H.J.; et al. Fdg-pet in immunocompetent patients with primary central nervous system lymphoma: Correlation with mri and clinical follow-up. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 164–168. [Google Scholar]
- Seok, H.; Lee, E.Y.; Choe, E.Y.; Yang, W.I.; Kim, J.Y.; Shin, D.Y.; Cho, H.J.; Kim, T.S.; Yun, M.J.; Lee, J.D.; et al. Analysis of 18f-fluorodeoxyglucose positron emission tomography findings in patients with pituitary lesions. Korean J. Intern. Med 2013, 28, 81–88. [Google Scholar]
- Borbely, K.; Wintermark, M.; Martos, J.; Fedorcsak, I.; Bognar, L.; Kasler, M. The pre-requisite of a second-generation glioma pet biomarker. J. Neurol. Sci 2010, 298, 11–16. [Google Scholar]
- Zimmer, L.; Luxen, A. Pet radiotracers for molecular imaging in the brain: Past, present and future. Neuroimage 2012, 61, 363–370. [Google Scholar]
- Di Chiro, G.; DeLaPaz, R.L.; Brooks, R.A.; Sokoloff, L.; Kornblith, P.L.; Smith, B.H.; Patronas, N.J.; Kufta, C.V.; Kessler, R.M.; Johnston, G.S.; et al. Glucose utilization of cerebral gliomas measured by [18f] fluorodeoxyglucose and positron emission tomography. Neurology 1982, 32, 1323–1329. [Google Scholar]
- Mertens, K.; Acou, M.; van Hauwe, J.; de Ruyck, I.; van den Broecke, C.; Kalala, J.P.; D’Asseler, Y.; Goethals, I. Validation of 18f-fdg pet at conventional and delayed intervals for the discrimination of high-grade from low-grade gliomas: A stereotactic pet and mri study. Clin. Nucl. Med 2013, 38, 495–500. [Google Scholar]
- Patronas, N.J.; di Chiro, G.; Kufta, C.; Bairamian, D.; Kornblith, P.L.; Simon, R.; Larson, S.M. Prediction of survival in glioma patients by means of positron emission tomography. J. Neurosurg 1985, 62, 816–822. [Google Scholar]
- Alavi, J.B.; Alavi, A.; Chawluk, J.; Kushner, M.; Powe, J.; Hickey, W.; Reivich, M. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 1988, 62, 1074–1078. [Google Scholar]
- Holzer, T.; Herholz, K.; Jeske, J.; Heiss, W.D. Fdg-pet as a prognostic indicator in radiochemotherapy of glioblastoma. J. Comput. Assist. Tomogr 1993, 17, 681–687. [Google Scholar]
- Herholz, K.; Langen, K.J.; Schiepers, C.; Mountz, J.M. Brain tumors. Semin. Nucl. Med 2012, 42, 356–370. [Google Scholar]
- Jeong, S.Y.; Lim, S.M. Comparison of 3′-deoxy-3′-[18f]fluorothymidine pet and O-(2-[18f]fluoroethyl)-l-tyrosine pet in patients with newly diagnosed glioma. Nucl. Med. Biol 2012, 39, 977–981. [Google Scholar]
- Lau, E.W.; Drummond, K.J.; Ware, R.E.; Drummond, E.; Hogg, A.; Ryan, G.; Grigg, A.; Callahan, J.; Hicks, R.J. Comparative pet study using f-18 fet and f-18 fdg for the evaluation of patients with suspected brain tumour. J. Clin. Neurosci 2010, 17, 43–49. [Google Scholar]
- Pauleit, D.; Stoffels, G.; Bachofner, A.; Floeth, F.W.; Sabel, M.; Herzog, H.; Tellmann, L.; Jansen, P.; Reifenberger, G.; Hamacher, K.; et al. Comparison of (18)f-fet and (18)f-fdg pet in brain tumors. Nucl. Med. Biol 2009, 36, 779–787. [Google Scholar]
- Suki, B. The major transitions of life from a network perspective. Front. Physiol 2012, 3, 94. [Google Scholar]
- Maynard Smith, J.; Szathmary, E. The Origins of Life: From the Birth of Life to the Origin of Language; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Maynard Smith, J.; Eörs, S. The Major Transitions in Evolution; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Macklem, P.T. Emergent phenomena and the secrets of life. J. Appl. Physiol 2008, 104, 1844–1846. [Google Scholar]
- Macklem, P.T.; Seely, A. Towards a definition of life. Perspect. Biol. Med 2010, 53, 330–340. [Google Scholar]
- Swenson, R. Emergent attractors and the law of maximum entropy production: Foundations to a theory of general evolution. Syst. Res 1989, 6, 187–197. [Google Scholar]
- Dewar, R.C. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A Math. Gen 2003, 36, 631–641. [Google Scholar]
- Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A Math. Gen 2005, 38, L371–L381. [Google Scholar]
- Kleidon, A.; Lorenz, R.D. Non-Equilibrium Thermodynamics and the Production of Entropy; Springer: Heidelberg, Germany, 2005. [Google Scholar]
- Dewar, R.C. Maximum entropy production and plant optimization theories. Philos. Trans. R. Soc. B 2010, 365, 1429–1435. [Google Scholar]
- Dewar, R.C. Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger. Entropy 2009, 11, 931–944. [Google Scholar]
- Duncan, T.L.; Semura, J.S. The deep physics behind the second law: Information and energy as independent forms of bookkeeping. Entropy 2004, 6, 21–29. [Google Scholar]
- Duncan, T.L.; Semura, J.S. Information loss as a foundational principle for the second law of thermodynamics. Found. Phys 2007, 37, 1767–1773. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev 1957, 106, 620–630. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev 1957, 108, 171–190. [Google Scholar]
- Ben-Naim, A. Entropy and the Second Law: Interpretations and Miss-Interpretationsss; World Scientific Publishing Co Pte. Ltd.: London, UK, 2012. [Google Scholar]
- Koroljow, S. Two cases of malignant tumors with metastases apparently treated successfully with hypoglycemic coma. Psychiatr. Q 1962, 36, 261–270. [Google Scholar]
- Santisteban, G.A.; Ely, J.T.; Hamel, E.E.; Read, D.H.; Kozawa, S.M. Glycemic modulation of tumor tolerance in a mouse model of breast cancer. Biochem. Biophys. Res. Commun 1985, 132, 1174–1179. [Google Scholar]
- Seyfried, T.N.; Sanderson, T.M.; el-Abbadi, M.M.; McGowan, R.; Mukherjee, P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br. J. Cancer 2003, 89, 1375–1382. [Google Scholar]
Pathology | Fractal Dimension (FD) | Entropy |
---|---|---|
Aging | ↑ FD of the cortex early in fetal life and childhood into adulthood [39–41] | ↑ human entropy production from birth to age 18 [77] |
⇓ human entropy production after early adulthood [77] | ||
⇓ FD of the cortex and white matter in late adulthood [28,42,43] | ↑ and ⇓ entropy production correlates with ↑ and ⇓ in VO2max in childhood and early adulthood, respectively [80] | |
⇓ entropy production―decreased glucose metabolism in frontal and temporal lobes with normal healthy aging [72,81,82] | ||
Epilepsy | ⇓ FD of white matter in half the patients with frontal lobe epilepsy [24] | ⇓ entropy production –interictal glucose hypometabolism correlates with epileptogenic region [83,85] |
Abnormal FD of the cortex in half the patients with cryptogenic epilepsy [23] | ||
Multiple Sclerosis | ⇓ FD of white matter containing MS lesions and normal appearing white matter [45] | ⇓ entropy production―glucose hypometabolism of the cerebral cortex, subcortical nuclei, supratentorial white matter, infratentorial structures, superior mesial frontal cortex, superior dorsolateral frontal cortex, mesial occipital cortex, lateral occipital cortex, deep parietal white matter and pons [86,87] |
Degree of cerebral hypometabolism ⇔ number of relapses [88] | ||
Thalamic and cerebellar glucose hypometabolism ⇔ total lesion volume [89] | ||
↑ FD of grey matter [46] | ↑ entropy production―increased cerebral glucose metabolism in the parietal and frontal cortex located close to areas of hypometabolism [89] | |
Alzheimer’s | ⇓ FD of anterior tip of the temporal lobe, mammillary bodies, superior colliculus, posterior edge of the corpus callosum, inferior colliculus and midthalamus [42] | ⇓ entropy production―cerebral glucose hypometabolism including the posterior cingulate cortex, parieto-temporal lobe and prefrontal cortex [90–97] |
FD of cortical ribbon significantly different from control subjects [48] | ||
Stroke | ⇓ FD of white matter in stroke-affected hemisphere [49] | ⇓ entropy production―contralateral cerebellar hypometabolism [98–100], hypometabolism of primary insult [100], ipsilateral cortical hypometabolim [98,101,102], global cerebral hypometabolism [103] |
Contralateral cerebellar hypometabolism ⇔ size of infarction [98,99] | ||
Ipsilateral cortical hypometabolism ⇔ occurrence of aphasia/neglect [101,102] | ||
Global cerebral hypometabolism ⇔ cognitive function and clinical status [103] | ||
Cancer | ↑ FD of tumor microvasculature of gliomas [50,51] | ↑ entropy production―glucose hypermetabolism in gliomas, CNS lymphomas and pituitary lesions [104–109] |
FD of tumor microvasculature of gliomas ⇔ tumor grade [50,51] | Glucose hypermetabolism ⇔ degree of malignancy in primary cerebral tumors [112–114] and CNS lymphomas [104,105] | |
⇓ FD of tumor microvasculature of benign pituitary adenomas [56] and malignant PRL producing carcinomas [57] | Tumor hypermetabolism ⇔ prognosis/survival [104,105,114–116] |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Seely, A.J.E.; Newman, K.D.; Herry, C.L. Fractal Structure and Entropy Production within the Central Nervous System. Entropy 2014, 16, 4497-4520. https://doi.org/10.3390/e16084497
Seely AJE, Newman KD, Herry CL. Fractal Structure and Entropy Production within the Central Nervous System. Entropy. 2014; 16(8):4497-4520. https://doi.org/10.3390/e16084497
Chicago/Turabian StyleSeely, Andrew J. E., Kimberley D. Newman, and Christophe L. Herry. 2014. "Fractal Structure and Entropy Production within the Central Nervous System" Entropy 16, no. 8: 4497-4520. https://doi.org/10.3390/e16084497