A Truncation Scheme for the BBGKY2 Equation
Abstract
:1. Introduction
2. Maximum Entropy Distributions
3. The BBGKY Hierarchy
4. The Stosszahlansatz for BBGKY2
5. The Collision Term
6. Final Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. II. Phys. Rev. 1957, 108. [Google Scholar] [CrossRef]
- Schneidman, E.; Still, S.; Berry, M.J.; Bialek, W. Network Information and Connected Correlations. Phys. Rev. Lett. 2003, 91, 238701. [Google Scholar] [CrossRef] [PubMed]
- Schneidman, E.; Berry, M.J.; Segev, R.; Bialek, W. Weak Pairwise Correlations Imply Strongly Correlated Network States in a Neural Population. Nature 2006, 440, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Stephens, G.J.; Bialek, W. Statistical Mechanics of Letters in Words. Phys. Rev. E 2010, 81, 066119. [Google Scholar] [CrossRef]
- Mora, T.; Bialek, W. Are Biological Systems Poised at Criticality? J. Stat. Phys. 2011, 144, 268–302. [Google Scholar] [CrossRef]
- Bialek, W.; Cavagna, A.; Giardina, I.; Mora, T.; Silvestri, E.; Viale, M.; Walczak, A.M. Statistical Mechanics for Natural Flocks of Birds. Proc. Natl. Acad. Sci. USA 2012, 109, 4786–4791. [Google Scholar] [CrossRef] [PubMed]
- Stephens, G.J.; Mora, T.; Tkačik, G.; Bialek, W. Statistical Thermodynamics of Natural Images. Phys. Rev. Lett. 2013, 110, 018701. [Google Scholar] [CrossRef] [PubMed]
- Van der Straeten, E. Maximum Entropy Estimation of Transition Probabilities of Reversible Markov Chains. Entropy 2009, 11, 867–887. [Google Scholar] [CrossRef]
- Marre, O.; El Boustani, S.; Frégnac, Y.; Destexhe, A. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations. Phys. Rev. Lett. 2009, 102, 138101. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, A.; Giardina, I.; Ginelli, F.; Mora, T.; Piovani, D.; Tavarone, R.; Walczak, A.M. Dynamical Maximum Entropy Approach to Flocking. Phys. Rev. E 2014, 89, 042707. [Google Scholar] [CrossRef]
- Chliamovitch, G.; Dupuis, A.; Golub, A.; Chopard, B. Improving Predictability of Time Series Using Maximum Entropy Methods. Europhys. Lett. 2015, 110. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Khinchin, A.Y. Mathematical Foundations of Information Theory; Dover: Mineola, NY, USA, 1957. [Google Scholar]
- Kreuzer, H.J. Nonequilibrium Thermodynamics and its Statistical Foundations; Oxford University Press: Oxford, UK, 1984. [Google Scholar]
- Liboff, R.L. Kinetic Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chliamovitch, G.; Malaspinas, O.; Chopard, B. A Truncation Scheme for the BBGKY2 Equation. Entropy 2015, 17, 7522-7529. https://doi.org/10.3390/e17117522
Chliamovitch G, Malaspinas O, Chopard B. A Truncation Scheme for the BBGKY2 Equation. Entropy. 2015; 17(11):7522-7529. https://doi.org/10.3390/e17117522
Chicago/Turabian StyleChliamovitch, Gregor, Orestis Malaspinas, and Bastien Chopard. 2015. "A Truncation Scheme for the BBGKY2 Equation" Entropy 17, no. 11: 7522-7529. https://doi.org/10.3390/e17117522