Fokker-Planck Equation and Thermodynamic System Analysis
Abstract
:1. Introduction
2. The Non-equilibrium Fokker-Planck Equation
3. Entropy Generation and Fokker-Planck Equation
4. Application to Biological Molecular Machines
- the relaxed state, in which the motor does not advance and waits for an energetic input;
- the excited state, in which the energy is transduced producing the power stroke of the motor.
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Jordan, R.; Kinderlehrer, D.; Otto, F. The Variational Formulation of the Fokker-Planck Equation. SIAM J. Math. Anal. 1998, 29, 1–17. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods, 2nd ed; Springer: Berlin, Germany, 1985. [Google Scholar]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed; Springer: Berlin, Germany, 1989. [Google Scholar]
- Schuss, H. Singular Perturbation Methods in Stochastic Differential Equations of Mathematical Physics. SIAM Rev 1980, 22, 119–155. [Google Scholar]
- Lucia, U. Carnot Efficiency: Why? Physica A 2013, 392, 3513–3517. [Google Scholar]
- Lavenda, B.H. Thermodynamics of Irreversible Processes; Dover: Mineola, NY, USA, 1993. [Google Scholar]
- Bejan, A. Advanced Engineering Thermodynamics; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lucia, U. Thermodynamic Paths and Stochastic Order in Open Systems. Physica A 2013, 392, 3912–3919. [Google Scholar]
- Tomé, T. Entropy Production in Non-Equilibrium Systems Described by a Fokker-Planck Equation. Braz. J. Phys. 2006, 36, 1285–1289. [Google Scholar]
- Dewar, R. Information Theory Explanation of the Fluctuation Theorem, Maximum Entropy Production and Self-Organized Criticality in Non-Equilibrium Stationary States. J. Phys. A 2003, 36, 631–641. [Google Scholar]
- Annila, A. All in Action. Entropy 2010, 12, 2333–2358. [Google Scholar]
- Wang, Q. Maximum Path Information and the Principle of Least Action for Chaotic System. Chaos Solitons Fractals 2004, 23, 1253–1258. [Google Scholar]
- Wang, Q. Non Quantum Uncertainty Relations of Stochastic Dynamics. Chaos Solitons Fractals 2005, 26, 1045–1053. [Google Scholar]
- Lucia, U. Entropy Generation and Fokker-Planck Equation. Physica A 2014, 393, 256–260. [Google Scholar]
- Wang, Q. Maximum Entropy Change and Least Action Principle for non-Equilibrium Systems. Astrophys. Space Sci. 2006, 305, 273–279. [Google Scholar]
- Wang, Q. Probability Distribution and Entropy as a Measure of Uncertainty. J. Phys. A 2008, 41, 065004. [Google Scholar]
- Lucia, U. Irreversible Entropy Variation and the Problem of the Trend to Equilibrium. Physica A 2007, 376, 289–292. [Google Scholar]
- Lucia, U. Thermodynamic Paths and Stochastic Order in Open Systems. Physica A 2013, 392, 3912–3919. [Google Scholar]
- Perez-Carrasco, R.; Sancho, J.M. Fokker-Planck Approach to Molecular Motors. Eur. Phys. Lett. 2010, 91, 60001. [Google Scholar]
- Sharma, V.; Annila, A. Natural Process–Natural Selection. Biophys. Chem. 2007, 127, 123–128. [Google Scholar]
- Sharma, V.; Kaila, V.R.I.; Annila, A. A Protein Folding as an Evolutionary Process. Physica A 2009, 388, 851–862. [Google Scholar]
- Annila, A.; Salthe, S. Physical Foundations of Evolutionary Theory. J. Non-Equilib. Thermodyn. 2010, 35, 301–321. [Google Scholar]
- Annila, A.; Salthe, S. Cultural Naturalism. Entropy 2010, 12, 1325–134. [Google Scholar]
- Martyushev, L.M. Entropy and Entropy Production: Old Misconceptions and New Breakthroughs. Entropy 2013, 15, 1152–1170. [Google Scholar]
- Polettini, M. Fact-Checking Ziegler’s Maximum Entropy Production Principle beyond the Linear Regime and towards Steady States. Entropy 2013, 15, 2570–2584. [Google Scholar]
- Lebowitz, J.L.; Boltzmann’s, Entropy. Large Deviation Lyapunov Functionals for Closed and Open Macroscopic Systems 2011, arXiv, 1112.1667.
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Gervino, G. Fokker-Planck Equation and Thermodynamic System Analysis. Entropy 2015, 17, 763-771. https://doi.org/10.3390/e17020763
Lucia U, Gervino G. Fokker-Planck Equation and Thermodynamic System Analysis. Entropy. 2015; 17(2):763-771. https://doi.org/10.3390/e17020763
Chicago/Turabian StyleLucia, Umberto, and Gianpiero Gervino. 2015. "Fokker-Planck Equation and Thermodynamic System Analysis" Entropy 17, no. 2: 763-771. https://doi.org/10.3390/e17020763
APA StyleLucia, U., & Gervino, G. (2015). Fokker-Planck Equation and Thermodynamic System Analysis. Entropy, 17(2), 763-771. https://doi.org/10.3390/e17020763