Ricci Curvature, Isoperimetry and a Non-additive Entropy
Abstract
:1. Introduction
2. About the Ricci Curvature and Its Generalizations
2.1. Geometry in Mechanics
2.2. Rudiments of Riemannian Curvature
2.3. About the Ricci Curvature
- For surjective, distance-decreasing maps f : M1 → M2, the volume obeys vol M1 ≤ vol M2.
- The volume of the unit cube [0, 1]n in Rn is normalized so that vol ([0, 1]n) = 1.
2.4. Generalized Ricci Curvature
3. Ricci Curvature via Optimal Transport
3.1. Otto’s View: the Porous Medium Equation and the Geometry of Space of Probability Distributions
3.2. Optimal Transportation and Wasserstein Spaces
- The problem is highly non-linear. To see this more concretely, let’s assume that both μ+, μ− are absolutely continuous with respect to the volume element of Rn with corresponding Radon-Nikodym densities ρ+, ρ−. Then it turns out that the push forward condition (68) translates into the Monge-Ampére, non-linear, equation
- Such a solution may not exist: consider for instance μ+ to be the Dirac delta function but not μ−.
3.3. The Brenier Map and Its Extensions: the Role of Convexity
3.4. Displacement Convexity and Synthetic Definition of the Generalized Ricci Curvature
- k–displacement convex if for any two and for all Wasserstein geodesics {μt}, t ∈ [0, 1], we have
- weakly k-displacement convex, if for all there is at least one Wasserstein geodesic along which (108) holds.
4. Isoperimetric Interpretation of the Non-extensive Parameter and Related Matters
5. Assessment and Omissions
Acknowledgments
Conflicts of Interest
References
- Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural a-entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Daróczy, Z. Generalized Information Functions. Inf. Control. 1970, 16, 36–51. [Google Scholar]
- Cressie, N.A.; Read, T.R. Multinomial goodness-of-fit tests. J. R. Stat. Soc. B 1984, 46, 440–464. [Google Scholar]
- Read, T.R.; Cressie, N.A. Goodness-of-fit Statistics for Discrete Multivariate Data; Springer: New York, NY, USA, 1988. [Google Scholar]
- Tsallis, C. Possible generalisation of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Wilk, G.; Wlodarczyk, Z. Tsallis distribution with complex nonextensivity parameter q. Physica A 2014, 413, 53–58. [Google Scholar]
- Abe, S. Essential discreteness in generalized thermostatistics with non-logarithmic entropy. Europhys. Lett. 2010, 90, 50004. [Google Scholar]
- Andresen, B. Comment on “Essential discreteness in generalized thermostatistics with non-logarithmic entropy” by Abe Sumiyoshi. Europhys. Lett. 2010, 92, 40005. [Google Scholar]
- Abe, S. Reply to the Comment by B. Adresen. Europhys. Lett. 2010, 92, 40006. [Google Scholar]
- Bagci, G.B.; Oikonomou, T.; Tirnakli, U. Comment on “Essential discreteness in generalised thermostatistics with non-logarithmic entropy” by S. Abe 2010. arXiv: 1006.1284.
- Boon, J.P.; Lutsko, J.F. Nonextensive formalism and continuous Hamiltonian systems. Phys. Lett. A 2011, 375, 329–334. [Google Scholar]
- Lutsko, J.F.; Boon, J.P. Questioning the validity of non-extensive thermodynamics for classical Hamiltonian systems. Europhys. Lett. 2011, 95, 20006. [Google Scholar]
- Quarati, P.; Lissia, M. The Phase Space Elementary Cell in Classical and Generalized Statistics. Entropy 2013, 15, 4319–4333. [Google Scholar]
- Plastino, A.; Rocca, M.C. Possible divergences in Tsallis’ thermostatistics. Europhys. Lett. 2013, 104, 60003. [Google Scholar]
- Gromov, M. Pseudo holomopric curves in symplectic manifolds. Invent. Math. 1985, 82, 307–347. [Google Scholar]
- Gromov, M. Sign and Geometric Meaning of Curvature. Rendiconti del Seminario Matematico e Fisico di Milano 1991, 61, 9–123. [Google Scholar]
- Spivak, M. A Comprehensive Introduction to Differential Geometry, 3rd, II, Publish or Perish: Houston, TX, USA, 1999.
- Cheeger, J.; Ebin, D.G. Comparison Theorems in Riemannian Geometry; North-Holland Publishing Co: New York, NY, USA, 1975. [Google Scholar]
- Sakai, T. Riemannian Geometry, 149, American Mathematical Society: Providence, RI, USA, 1996.
- Zhu, S. The Comparison Geometry of Ricci Curvature. In Comparison Geometry; Grove, K., Petersen, P., Eds.; MSRI Publications, Volume 30; Cambridge University Press: Cambridge, UK, 1997; pp. 221–262. [Google Scholar]
- Eschenburg, J.-H. Comparison Theorems in Riemannian Geometry, Universitá di Trento: Trento, Italy, 1994.
- Karcher, H. Riemannian Comparison Constructions. In Global Differential Geometry; Chern, S.S., Ed.; MAA Studies in Math, Volmue 27; Mathematical Association of America (MAA): Washington, DC, USA, 1989; pp. 170–222. [Google Scholar]
- Gromov, M. Metric Structures for Riemannian and Non-Riemannian Spaces; Birkhäuser: Boston, MA, USA, 1999. [Google Scholar]
- Simon, B. The Statistical Mechanics of Lattice Gases; Volume 1, Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Gallavotti, G. Statistical Mechanics: A Short Treatise; Springer: Berlin, Germany, 1999. [Google Scholar]
- Beem, J.K.; Ehrlich, P.E.; Easley, K.L. Global Lorentzian Geometry, 2 ed; Marcel Dekker Inc: New York, NY, USA, 1996. [Google Scholar]
- Lichnerowicz, A. Géométrie des groupes de transformations, Travaux et Recherches, Mathématiques, Volmue III, Dunod: Paris, France, 1958.
- Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 1962, 14, 333–340. [Google Scholar]
- Katok, A.; Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Bakry, D.; Émery, M. Diffusions hypercontractives. Sem. Prob. (Strasbourg) 1985, 19, 177–206. [Google Scholar]
- Qian, Z. Estimates for weighted volumes and applications. Q. J. Math. 1997, 48, 235–242. [Google Scholar]
- Álvarez-Paiva, J.-C.; Thompson, A.C. Volumes in Normed and Finsler Spaces. In A Sampler of Riemann-Finsler Geometry; Bao, D., Bryant, R., Chern, S.S., Shen, Z., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 1–49. [Google Scholar]
- Lott, J.; Villani, C. Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 2009, 169, 903–991. [Google Scholar]
- Villani, C. Optimal Transport: Old and New; Volume 338, Springer: Berlin, Germany, 2009. [Google Scholar]
- Ohta, S.-I. On the measure contraction property of metric measure spaces. Commnet. Math. Helv. 2007, 62, 805–828. [Google Scholar]
- Ollivier, Y. Ricci curvature of metric spaces. Comptes Rendus Math. 2007, 345, 643–646. [Google Scholar]
- Ollivier, Y. Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 2009, 256, 810–864. [Google Scholar]
- Ledoux, M. The geometry of Markov diffusion generators. Ann. Fac. Sci. Toul. Math. 2000, 9, 305–366. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications, 2002; arXiv:math.DG/0211159.
- Perelman, G. Ricci flow with surgery on three-manifolds, 2003; arXiv:math.DG/0303109.
- Kleiner, B.; Lott, J. Notes on Perelman’s papers. Geom. Topol. 2008, 12, 2587–2855. [Google Scholar]
- Chang, S.-Y. A.; Gursky, M.J.; Yang, P. Conformal invariants associated to a measure. Proc. Natl. Acad. Sci. USA. 2006, 103, 2535–2540. [Google Scholar]
- Case, J.S. Smooth metric measure spaces and quasi-Einstein metrics. Int. J. Math. 2012, 23, 1250110. [Google Scholar]
- Case, J.S. The energy of a smooth metric measure space and applications. J. Geom. Anal. 2015, 25, 616–667. [Google Scholar]
- Woolgar, E. Scalar-tensor gravitation and the Bakry-emery-Ricci tensor. Class. Quant. Grav. 2013, 30, 085007. [Google Scholar]
- Rupert, M.; Woolgar, E. Bakry-Émery black holes. Class. Quant. Grav. 2014, 31, 025008. [Google Scholar]
- Galloway, G.; Woolgar, E. Cosmological singularities in Bakry-Émery spacetimes. J. Geom. Phys. 2014, 359–369. [Google Scholar]
- Lott, J. Some geometric properties of the Bakry-Émery-Ricci tensor. Comm. Math. Helv. 2003, 78, 865–883. [Google Scholar]
- Wei, G.; Wylie, W. Comparison Geometry for the Bakry-Émery Ricci tensor. J. Diff. Geom. 2009, 83, 377–405. [Google Scholar]
- Otto, F. The geometry of the dissipative evolution equations: The porous medium equation. Commun. Part. Diff. Eq. 2001, 26, 101–174. [Google Scholar]
- Ambrosio, L.; Gigli, N.; Savaré, G. Gradient Flows in Metric Spaces and the Space of Probability Measures, 2nd ed; Birkhäuser Verlag AG: Basel, Switzerland, 2008. [Google Scholar]
- Lott, J. Some Geometric Calculations in Wasserstein Space. Commun. Math. Phys. 2008, 277, 423–437. [Google Scholar]
- Petrunin, A. Parallel transportation for Alexandrov space with curvature bounded below. Geom. Funct. Anal. 1998, 8, 123–148. [Google Scholar]
- Ohta, S.-I. Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Amer. J. Math. 2009, 131, 475–516. [Google Scholar]
- Lott, J. On tangent cones and parallel transport in Wasserstein space 2014. arXiv:1407.7245.
- Bountis, T.; Skokos, H. Complex Hamitonian Dynamics; Springer: Berlin, Germany, 2012. [Google Scholar]
- Antonopoulos, Ch.; Bountis, T.; Basios, V. Quasi-Stationary Chaotic States in Multi-Dimensional Hsmitonian systems. Physica A 2011, 390, 3290–3307. [Google Scholar]
- Zaslavsky, G.M. Chaos, fractional kinetics and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar]
- Kalogeropoulos, N. Weak chaos from Tsallis entropy. QSci. Connect. 2012. [Google Scholar] [CrossRef]
- Kalogeropoulos, N. Vanishing largest Lyapunov exponent and Tsallis entropy. QSci. Connect. 2013. [Google Scholar] [CrossRef]
- Vázquez, J.L. The Porous Medium Equation: Mathematical Theory; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Vázquez, J.L. Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 2014, 16, 769–803. [Google Scholar]
- Monge, G. Memoire sur la théorie des déblais et des remblais, Histoire de l’Académie royale des sciences: Paris, France; 1781.
- Ambrosio, L.; Gigli, N. A User’s Guide to Optimal Transport. In Modelling and Optimization of Flows on Networks; Piccoli, B., Rascle, M., Eds.; Lecture Notes in Mathematics, Volume 2062; Springer: Berlin, Germany, 2013; pp. 1–155. [Google Scholar]
- Evans, L.C. Partial Differential Equations and Monge-Kantorovich Mass Transfer. Current Developments in Mathematics, Bott, R., Jaffe, A., Jerison, D., Lusztig, G., Singer, I., Yau, S.T., Eds.; International Press: Boston, MA, USA, 1997; 65–126. [Google Scholar]
- McCann, R.; Guillen, N. Five Lectures on Optimal Transportation: Geometry, Regularity and Applications. Analysis and Geometry of Metric Measure Spaces, Dafni, G., McCann, R.J., Stancu, A., Eds.; CRM Proceedings Lecture Series, Volume 56, American Mathmatic Society: Providence, RI, USA, 2013; 145–180. [Google Scholar]
- Kantorovich, L. On the translocation of masses. Dokl. Akad. Nauk USSR. 1942, 37, 227–229. [Google Scholar]
- Kantorovich, L. On a problem of Monge. Usp. Mat. Nauka. 1948, 3, 225–226. [Google Scholar]
- Koopmans, T.C. Optimum utilisation of the transportation system. Econom. J. Econom. Soc. 1949, 17, 136–146. [Google Scholar]
- Rachev, S.T. Probability Metrics and the Stability of Stochastic Models; John Wiley & Sons: Chichester, UK, 1991. [Google Scholar]
- Brenier, Y. Décomposition polaire et rearrangement monotone des champs de vecteurs. Comptes Rendus Acad. Sci. Paris. 1987, 305, 805–808. [Google Scholar]
- Brenier, Y. Polar factorisation and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 1991, 44, 375–417. [Google Scholar]
- McCann, R.J. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J 1995, 80, 309–324. [Google Scholar]
- Gangbo, W.; McCann, R.J. The geometry of optimal transportation. Acta Math. 1996, 177, 113–161. [Google Scholar]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Otto, F.; Villani, C. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 2000, 173, 361–400. [Google Scholar]
- McCann, R.J. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 2001, 11, 589–608. [Google Scholar]
- Cordero-Erausquin, D.; McCann, R.J.; Schmuckenschläger, M. A Riemannian interpolation inequality á la Borrell, Brascamp and Lieb. Invent. Math. 2001, 146, 219–257. [Google Scholar]
- Cordero-Erausquin, D.; McCann, R.J.; Schmuckenschläger, M. Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields and optimal transport. Ann. Fac. Sci. Toulouse Math. 2006, 15, 613–635. [Google Scholar]
- Von Renesse, M.-K.; Sturm, K.-T. Transport inequalities, gradient estimates and Ricci curvature. Comm. Pure Appl. Math. 2005, 68, 923–940. [Google Scholar]
- Sturm, K.-T. Generalized Ricci curvature bounds and convergence of metric measure spaces. Comptes Rendus Acad. Sci. Paris. 2005, 340, 235–238. [Google Scholar]
- Sturm, K.-T. A Curvature-Dimension Condition for Metric-Measure Spaces. Comptes Rendus Acad. Sci. Paris 2006, 342, 197–200. [Google Scholar]
- Sturm, K.-T. On the geometry of metric-measure spaces. Acta Math. 2006, 196, 65–131. [Google Scholar]
- Sturm, K.-T. On the geometry of metric-measure spaces II. Acta Math. 2006, 196, 133–177. [Google Scholar]
- Lott, J.; Villani, C. Weak curvature conditions and functional inequalities. J. Funct. Anal. 2007, 245, 311–333. [Google Scholar]
- Kalogeropoulos, N. Tsallis entropy induced metrics and CAT(k) spaces. Physica A 2012, 391, 3435–2445. [Google Scholar]
- Kalogeropoulos, N. Long-range interactions, doubling measures and Tsallis entropy. Eur. Phys. J. B 2014, 87, 56. [Google Scholar]
- Kalogeropoulos, N. Almost additive entropy. Int. J. Geom. Methods Mod. Phys. 2014, 11, 1450040. [Google Scholar]
- Kalogeropoulos, N. Groups, non-additive entropy and phase transitions. Int. J. Mod. Phys. B 2014, 28, 1450162. [Google Scholar]
- Ruelle, D. Statistical Mechanics: Rigorous Results; W.A. Benjamin: New York, NY, USA, 1969. [Google Scholar]
- McCann, R.J. A convexity principle for interacting gases. Adv. Math. 1997, 128, 153–179. [Google Scholar]
- Chavel, I. Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Burago, Y.D.; Zalgaller, V.A. Geometric Inequalities; Springer: Berlin, Germany, 1988. [Google Scholar]
- Beck, C.; Schlögl, F. Thermodynamics of Chaotic Systems: An Introduction; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an ab initio derivation of their entropy and distribution functions. Europhys. Lett. 2011, 93, 20006. [Google Scholar]
- Hanel, R.; Thurner, S. When do generalized entropies apply? How phase space volume determines entropy. Europhys. Lett. 2011, 96, 50003. [Google Scholar]
- O’Neill, B. The fundamental equations of a submersion. Mich. Math. J 1966, 13, 459–469. [Google Scholar]
- Almeida, M.P. Generalized entropies from first principles. Physica A 2001, 300, 424–432. [Google Scholar]
- Adib, A.B.; Moreira, A.A.; Andrade, J.S.; Almeida, M.P. Tsallis thermostatistics for finite systems: A Hamiltonian approach. Physica A 2003, 322, 276–284. [Google Scholar]
- Kalogeropoulos, N. Quasi-conformality and a non-additive entropy, Manuscript under preparation.
- Pin, O.C. Curvature and Mechanics. Adv. Math. 1975, 15, 269–311. [Google Scholar]
- Casetti, L.; Pettini, M.; Cohen, E.G.D. Geometric approach to Hamiltonian dynamics and Statistical Mechanics. Phys. Rep. 2000, 337, 237–341. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalogeropoulos, N. Ricci Curvature, Isoperimetry and a Non-additive Entropy. Entropy 2015, 17, 1278-1308. https://doi.org/10.3390/e17031278
Kalogeropoulos N. Ricci Curvature, Isoperimetry and a Non-additive Entropy. Entropy. 2015; 17(3):1278-1308. https://doi.org/10.3390/e17031278
Chicago/Turabian StyleKalogeropoulos, Nikos. 2015. "Ricci Curvature, Isoperimetry and a Non-additive Entropy" Entropy 17, no. 3: 1278-1308. https://doi.org/10.3390/e17031278
APA StyleKalogeropoulos, N. (2015). Ricci Curvature, Isoperimetry and a Non-additive Entropy. Entropy, 17(3), 1278-1308. https://doi.org/10.3390/e17031278