Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems
Abstract
:(a) On the nature of the index q
(b) On nonindependent probabilities
(c) On unconventional averages
Acknowledgments
Conflicts of Interest
References
- Brukner, C.; Zeilinger, A. Conceptual inadequacy of the Shannon information in quantum measurements. Phys. Rev. A 2001, 63, 022113. [Google Scholar]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K.A. Nonadditive entropies yield probability distributions with biases not warranted by the data. Phys. Rev. Lett. 2013, 111, 180604. [Google Scholar]
- Pressé, S. Nonadditive entropy maximization is inconsistent with Bayesian updating. Phys. Rev. E 2014, 90, 052149. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar]
- Gell-Mann, M.; Tsallis, C. (Eds.) Nonextensive Entropy—Interdisciplinary Applications; Oxford University Press: New York, NY, USA, 2004; [The title “Nonextensive Entropy” is a misname: read “Nonadditive Entropy”].
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics—An overview after 20 years. Braz. J. Phys. 2009, 39, 337–356. [Google Scholar]
- Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment; Pergamon: Oxford, UK, 1970; p. 167. [Google Scholar]
- Ubriaco, M. Entropies based on factional calculus. Phys. Lett. A 2009, 373, 2516–2519. [Google Scholar]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73. [Google Scholar] [CrossRef]
- Komatsu, N.; Kimura, S. Entropic cosmology for a generalized black-hole entropy. Phys. Rev. D 2013, 88, 083534. [Google Scholar]
- Komatsu, N. Entropic cosmology from a thermodynamics viewpoint. JPS Conf. Proc. 2014, 1, 013112. [Google Scholar]
- Komatsu, N.; Kimura, S. Evolution of the universe in entropic cosmologies via different formulations. Phys. Rev. D 2014, 89, 123501. [Google Scholar]
- Ruiz, G.; Tsallis, C. Reply to Comment on “Towards a large deviation theory for strongly correlated systems”. Phys. Lett. A 2013, 377, 491–495. [Google Scholar]
- Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. Europhys. Lett. 2011, 93, 20006. [Google Scholar]
- Hanel, R.; Thurner, S. When do generalised entropies apply? How phase space volume determines entropy. Europhys. Lett. 2011, 96, 50003. [Google Scholar]
- Lyra, M.L.; Tsallis, C. Nonextensivity and multifractality in low-dimensional dissipative systems. Phys. Rev. Lett. 1998, 80. [Google Scholar] [CrossRef]
- Baldovin, F.; Robledo, A. Nonextensive Pesin identity. Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. Phys. Rev. E 2004, 69, 045202(R). [Google Scholar]
- Lutz, E. Anomalous diffusion and Tsallis statistics in an optical lattice. Phys. Rev. A 2003, 67, 051402(R). [Google Scholar]
- Douglas, P.; Bergamini, S.; Renzoni, F. Tunable Tsallis distributions in dissipative optical lattices. Phys. Rev. Lett. 2006, 96, 110601. [Google Scholar]
- Lutz, E.; Renzoni, F. Beyond Boltzmann-Gibbs statistical mechanics in optical lattices. Nat. Phys. 2013, 9, 615–619. [Google Scholar]
- Caruso, F.; Tsallis, C. Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics. Phys. Rev. E 2008, 78, 021102. [Google Scholar]
- Andrade, J.S., Jr.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of overdamped motion of interacting particles. Phys. Rev. Lett. 2010, 105, 260601. [Google Scholar]
- Nivanen, L.; Le Mehaute, A.; Wang, Q.A. Generalized algebra within a nonextensive statistics. Rep. Math. Phys. 2003, 52, 437–444. [Google Scholar]
- Borges, E.P. A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A 2004, 340, 95–101. [Google Scholar]
- Thistleton, W.; Marsh, J.A.; Nelson, K.; Tsallis, C. Generalized Box-Muller method for generating q-Gaussian random deviates. IEEE Trans. Inf. Theory 2007, 53, 4805–4810. [Google Scholar]
- Tsallis, C.; Plastino, A.R.; Alvarez-Estrada, R.F. Escort mean values and the characterization of power-law-decaying probability densities. J. Math. Phys. 2009, 50, 043303. [Google Scholar] [Green Version]
- Ferri, G.L.; Martinez, S.; Plastino, A. The role of constraints in Tsallis’ nonextensive treatment revisited. Physica A 2005, 347, 205–220. [Google Scholar]
- Schwammle, V.; Nobre, F.D.; Curado, E.M.F. Consequences of the H theorem from nonlinear Fokker-Planck equations. Phys. Rev. E 2007, 76, 041123. [Google Scholar]
- Schwammle, V.; Curado, E.M.F.; Nobre, F.D. A general nonlinear Fokker-Planck equation and its associated entropy. Eur. Phys. J. B 2007, 58, 159–165. [Google Scholar]
- Schwammle, V.; Curado, E.M.F.; Nobre, F.D. Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations. Eur. Phys. J. B 2009, 70, 107–116. [Google Scholar]
- Ribeiro, M.S.; Nobre, F.D.; Curado, E.M.F. Classes of N-dimensional nonlinear Fokker-Planck equations associated to Tsallis entropy. Entropy 2011, 13, 1928–1944. [Google Scholar]
- Mariz, A.M.; Tsallis, C. Unified long-memory mesoscopic mechanism consistent with nonextensive statistical mechanics. Phys. Lett. A 2012, 376, 3088–3091. [Google Scholar]
- Ribeiro, M.S.; Tsallis, C.; Nobre, F.D. Probability distributions extremizing the nonadditive entropy Sδ and stationary states of the corresponding nonlinear Fokker-Planck equation. Phys. Rev. E 2013, 88, 052107. [Google Scholar]
- Bibliography of Nonextensive Statistical Mechanics and Thermodynamics. A regularly updated bibliography is available at http://tsallis.cat.cbpf.br/biblio.htm accessed on 5 May 2015.
- Liu, B.; Goree, J. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. Phys. Rev. Lett. 2008, 100, 055003. [Google Scholar]
- DeVoe, R.G. Power-law distributions for a trapped ion interacting with a classical buffer gas. Phys. Rev. Lett. 2009, 102, 063001. [Google Scholar]
- Pickup, R.M.; Cywinski, R.; Pappas, C.; Farago, B.; Fouquet, P. Generalized spin-glass relaxation. Phys. Rev. Lett. 2009, 102, 097202. [Google Scholar]
- Wong, C.Y.; Wilk, G. Tsallis fits to pT spectra and relativistic hard scattering in pp collisions at LHC. Phys. Rev. D 2013, 87, 114007. [Google Scholar]
- Cirto, L.J.L.; Assis, V.R.V.; Tsallis, C. Influence of the interaction range on the thermostatistics of a classical many-body system. Physica A 2014, 393, 286–296. [Google Scholar]
- Christodoulidi, H.; Tsallis, C.; Bountis, T. Fermi-Pasta-Ulam model with long-range interactions: Dynamics and thermostatistics. Europhys. Lett. 2014, 108, 40006. [Google Scholar]
- Nobre, F.D.; Rego-Monteiro, M.A.; Tsallis, C. Nonlinear generalizations of relativistic and quantum equations with a common type of solution. Phys. Rev. Lett. 2011, 106, 140601. [Google Scholar]
- Borges, E.P. On a q-generalization of circular and hyperbolic functions. J. Phys. A 1998, 31, 5281. [Google Scholar]
- Tirnakli, U.; Borges, E.P. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics 2015. arXiv: 1501.02459.
- Umarov, S.; Tsallis, C.; Steinberg, S. On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 2008, 76, 307–328. [Google Scholar]
- Umarov, S.; Tsallis, C.; Gell-Mann, M.; Steinberg, S. Generalization of symmetric α-stable Lévy distributions for q > 1. J. Math. Phys. 2010, 51, 033502. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell System Tech. J 1948, 27. [Google Scholar]
- Khinchin, A.I. Mathematical Foundations of Information Theory; Dover: New York, NY, USA, 1957. [Google Scholar]
- Dos Santos, R.J.V. Generalization of Shannon’s theorem for Tsallis entropy. J. Math. Phys. 1997, 38. [Google Scholar] [CrossRef]
- Abe, S. Axioms and uniqueness theorem for Tsallis entropy. Phys. Lett. A 2000, 271, 74–79. [Google Scholar]
ENTROPY | |||
---|---|---|---|
W(N) (N → ∞) | SBG (ADDITIVE) | Sq (q ≠ 1) (NONADDITIVE) | Sδ (δ ≠ 1) (NONADDITIVE) |
∼ µN (µ > 1) | EXTENSIVE | NONEXTENSIVE | NONEXTENSIVE |
∼ Nρ (ρ > 0) | NONEXTENSIVE | EXTENSIVE (q = 1 − 1/ρ) | NONEXTENSIVE |
NONEXTENSIVE | NONEXTENSIVE | EXTENSIVE (δ = 1/γ) |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsallis, C. Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems. Entropy 2015, 17, 2853-2861. https://doi.org/10.3390/e17052853
Tsallis C. Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems. Entropy. 2015; 17(5):2853-2861. https://doi.org/10.3390/e17052853
Chicago/Turabian StyleTsallis, Constantino. 2015. "Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems" Entropy 17, no. 5: 2853-2861. https://doi.org/10.3390/e17052853
APA StyleTsallis, C. (2015). Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex Systems. Entropy, 17(5), 2853-2861. https://doi.org/10.3390/e17052853