Numerical Study of Entropy Generation in Mixed MHD Convection in a Square Lid-Driven Cavity Filled with Darcy–Brinkman–Forchheimer Porous Medium
Abstract
:1. Introduction
2. Mathematical Formulation
3. Second Law Formulation
4. Numerical Method
5. Results and Discussion
6. Conclusions
- (1)
- The entropy generation rate decreases with the decrease of Darcy number and the increase of Hartmann number.
- (2)
- The flow structure strongly depends on the Hartmann number.
- (3)
- At a fixed Hartmann number, the entropy generation increases with the increase of the Reynolds number.
- (4)
- At a fixed and relatively high Reynolds number, the entropy generation remains constant for a Hartmann number smaller than 50.
- (5)
- The Forchheimer effect is significant for a Hartmann number between 0 and 25 and negligible for a Hartmann number greater than 50.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
B0 | uniform magnetic field |
Br | Brinkman number |
Br* | modified Brinkman number |
Cp | specific heat (J∙Kg∙K−1) |
Da | Darcy numberk/H2 |
g | gravitational acceleration (m·s−2) |
Jk | diffusion flux (k = U, V, T, C) |
K | permeability of the medium (m2) |
Nu | Nusselt number |
P | dimensionless pressure |
Pr | Prandtl number |
Ra | Rayleigh number |
Re | Reynolds number |
Ri | Richardson number |
U | dimensionless velocity vector |
U, V | dimensionless velocity components |
T | Dimensionless temperature |
X, Y | dimensionless Cartesian coordinates |
Greek letters | |
τ | dimensionless time |
α | thermal diffusivity |
βɵ | thermal expansion coefficient |
ρ | mass density |
Ɵ | temperature |
μ | dynamic viscosity |
ν | kinematic viscosity (m2·s−1) |
ε | porosity of the media |
Nabla vector |
References
- Nield, D.A.; Bejan, A. Convection in Porous Media, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Ingham, D.B.; Pop, I. Transport Phenomena in Porous Media; Elsevier: Oxford, UK, 2005. [Google Scholar]
- Vafai, K. Handbook of Porous Media, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2005. [Google Scholar]
- Bejan, A.; Dincer, I.; Lorente, S.; Miguel, A.F.; Reis, A.H. Porous and Complex Flows Structures in Modern Technologies; Springer: New York, NY, USA, 2004. [Google Scholar]
- Chamkha, A.J. Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption. Numer. Heat Transf. A Appl. 2002, 41, 529–546. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. Double-diffusive mixed convection in a lid-driven enclosure filled with a fluid saturated porous medium. Numer. Heat Transf. A Appl. 2002, 42, 465–486. [Google Scholar] [CrossRef]
- Cheng, T.S. Characteristics of mixed convection heat transfer in a lid-driven square cavity with various Richardson and Prandtl numbers. Int. J. Ther. Sci. 2011, 50, 197–205. [Google Scholar] [CrossRef]
- Muthtamilselvan, M.; Kandaswamy, P.; Lee, J. Hydromagnetic mixed convection in a lid-driven cavity filled with a fluid-saturated porous medium. Int. J. Appl. Math. Mech. 2009, 5, 28–44. [Google Scholar]
- Rahman, M.M.; Billah, M.M.; Mamun, M.A.H.; Saidur, R.; Hasanuzzaman, M. Reynolds and Prandtl numbers effects on MHD mixed convection in a lid-driven cavity along with joule heating and a centered heat conducting circular block. Int. J. Mech. Mater. Eng. 2010, 5, 163–170. [Google Scholar]
- Mansour, M.A.; Mohamed, R.A.; Abd-Elaziz, M.M.; Ahmed, S.E. Numerical simulation of mixed convectionflows in a square lid-driven cavity partially heated from below using nanofluid. Int. Commun. Heat Mass Transf. 2010, 37, 1504–1512. [Google Scholar] [CrossRef]
- Saha, L.K.; Somadder, M.C.; Roy, N.C. Hydro-magnetic mixed convection flow in a lid-driven cavity with wavy bottom surface. Am. J. Appl. Math. 2015, 3, 8–19. [Google Scholar]
- Mamourian, M.; Shirvan, K.M.; Ellahi, R.; Rahimi, A.B. Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int. J. Heat Mass Transf. 2016, 102, 544–554. [Google Scholar] [CrossRef]
- Akbar, N.S.; Raza, M.; Ellahi, R. Endoscopic effects with entropy generation analysis in peristalsis for the thermal conductivity of H2O + Cu nanofluid. J. Appl. Fluid Mech. 2016, 9, 1721–1730. [Google Scholar]
- Ellahi, R.; Hassan, M.; Zeeshan, A. Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation. Int. J. Heat Mass Transf. 2015, 81, 449–456. [Google Scholar] [CrossRef]
- Akbar, N.S.; Raza, M.; Ellahi, R. Peristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generation. Results Phys. 2015, 5, 115–124. [Google Scholar] [CrossRef]
- Van Doormal, J.P.; Raithby, G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flow. Numer. Heat Transf. 1984, 7, 147–163. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical heat transfer and fluid flow. In Computational Methods in Mechanics and Thermal Sciences; Hemisphere/Mac Graw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Abbassi, H.; Turki, S.; Nasrallah, S.B. Mixed convection in a plane channel with a built-in triangular prison. HTPA 2001, 39, 307–320. [Google Scholar]
- Saabas, H.J.; Baliga, B.R. Co-located equal-order control volume finite element method for multidimensional incompressible fluid flow—Part II: Verification. Numer. Heat Transf. B Fundam. 1994, 26, 381–407. [Google Scholar] [CrossRef]
- Pantakar, S.V.; Spalding, D.B. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. Int. J. Heat Mass Transf. 1972, 15, 1787–1806. [Google Scholar]
- Jue, T.C. Analysis of Bénard convection in rectangular cavities filled with a porous medium. Acta Mech. 2001, 146, 21–29. [Google Scholar] [CrossRef]
Ra | 103 | 104 | 105 |
---|---|---|---|
Present study | 1.099 | 2.295 | 4.664 |
Davis (1983) | 1.118 | 2.243 | 4.519 |
Nithyadevi et al. (2009) | 1.123 | 2.304 | 4.899 |
Ra | ε | Present Results | Muthtamilselvan et al. (2009) | June (2001) |
---|---|---|---|---|
105 | 0.4 | 2.9482 | 2.9004 | 2.9435 |
0.6 | 3.1310 | 3.0893 | 3.0877 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouabda, R.; Bouabid, M.; Ben Brahim, A.; Magherbi, M. Numerical Study of Entropy Generation in Mixed MHD Convection in a Square Lid-Driven Cavity Filled with Darcy–Brinkman–Forchheimer Porous Medium. Entropy 2016, 18, 436. https://doi.org/10.3390/e18120436
Bouabda R, Bouabid M, Ben Brahim A, Magherbi M. Numerical Study of Entropy Generation in Mixed MHD Convection in a Square Lid-Driven Cavity Filled with Darcy–Brinkman–Forchheimer Porous Medium. Entropy. 2016; 18(12):436. https://doi.org/10.3390/e18120436
Chicago/Turabian StyleBouabda, Rahma, Mounir Bouabid, Ammar Ben Brahim, and Mourad Magherbi. 2016. "Numerical Study of Entropy Generation in Mixed MHD Convection in a Square Lid-Driven Cavity Filled with Darcy–Brinkman–Forchheimer Porous Medium" Entropy 18, no. 12: 436. https://doi.org/10.3390/e18120436
APA StyleBouabda, R., Bouabid, M., Ben Brahim, A., & Magherbi, M. (2016). Numerical Study of Entropy Generation in Mixed MHD Convection in a Square Lid-Driven Cavity Filled with Darcy–Brinkman–Forchheimer Porous Medium. Entropy, 18(12), 436. https://doi.org/10.3390/e18120436