A Kinetic Perspective on k‒ε Turbulence Model and Corresponding Entropy Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- In this paper, we present an alternative derivation of Equation (45) based on a kinetic approach. This approach provides a novel perspective on the turbulence model, which remains one of the most successful models for many engineering applications, even though it is still affected by empirical assumptions for the turbulent dissipation function. In particular, our approach clarifies that this model is nothing more than a set of coupled BGK-like equations with a proper forcing, see the last term in Equation (35). Note that the formal expansion proposed for k in Equation (41) may not be suitable for ϵ, because the forcing term would change the local equilibrium, which must be unique in kinetic theory. Hence, some further investigations are required to find out the most suitable expansion for analyzing the high-order asymptotics. This is not surprising, because different asymptotic approaches (Chapman–Enskog, Hilbert, Grad, etc.) have been long debated in kinetic theory of rarefied gas [78].
- Equation (45) proves that four terms are the main sources of entropy production rates in turbulent flows: (1) direct dissipation; (2) indirect (turbulent) dissipation; (3) heat conduction driven by average temperature gradients and (4) heat conduction driven by fluctuating temperature gradients [68,69,70]. These production rates (and their sum) are positively defined, consistently with the second law of thermodynamics.
- In Equation (45), the entropy production can be expressed as
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Benzi, R.; Frisch, U. Turbulence. Available online: http://www.scholarpedia.org/article/Turbulence (accessed on 29 March 2016).
- Darrigol, O. World of Flow: A History of Hydrodynamics from Bernoullis to Prandt; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Gallavotti, G. Foundations of Fluid Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk. SSSR 1941, 30, 9–13. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk. SSSR 1941, 31, 538–540. [Google Scholar]
- Frisch, U. Turbulence, the Legacy of A.N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Gioia, G.; Chakraborty, P. Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory. Phys. Rev. Lett. 2006, 96, 044502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventola, L.; Robotti, F.; Dialameh, M.; Calignano, F.; Manfredi, D.; Chiavazzo, E.; Asinari, P. Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int. J. Heat Mass Transf. 2013, 75, 58–74. [Google Scholar] [CrossRef]
- Ventola, L.; Dialameh, M.; Fasano, M.; Chiavazzo, E.; Asinari, P. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology. Appl. Thermal Eng. 2016, 93, 1254–1263. [Google Scholar] [CrossRef]
- Fasano, M.; Ventola, L.; Calignano, F.; Manfredi, D.; Ambrosio, E.P.; Chiavazzo, E.; Asinari, P. Passive heat transfer enhancement by 3D printed Pitot tube based heat sink. Int. Commun. Heat Mass Transf. 2016, 74, 36–39. [Google Scholar] [CrossRef]
- Orszag, S.A.; Patterson, G.S. Numerical simulation of turbulence: Statistical models and turbulence. Lect. Notes Phys. 1972, 12, 127–147. [Google Scholar]
- Chiavazzo, E. Invariant Manifolds and Lattice Boltzmann Method for Combustion. Ph.D. Thesis, ETH Zürich, Switzerland, 2009. [Google Scholar]
- Chiavazzo, E.; Fasano, M.; Asinari, P. Inference of analytical thermodynamic models for biological networks. Physica A 2013, 392, 1122–1132. [Google Scholar] [CrossRef]
- McNamara, G.R.; Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 1988, 61. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; D’Humières, D.; Lallemand, P. Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 1992, 17, 479. [Google Scholar] [CrossRef]
- He, X.; Luo, L.-S. A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 1997, 55, R6333. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Yu, D.; Mei, R.; Luo, L.-S.; Shyy, W. Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 2003, 39, 329–367. [Google Scholar] [CrossRef]
- Aidun, C.K.; Clausen, J.R. Lattice-boltzmann method for complex flows. Ann. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Asinari, P.; Mishra, S.C.; Borchiellini, R. A lattice Boltzmann formulation to the analysis of radiative heat transfer problems in a participating medium. Numer. Heat Trans. Part B Fundam. 2010, 57, 1–21. [Google Scholar] [CrossRef]
- Chiavazzo, E.; Asinari, P. Reconstruction and modeling of 3D percolation networks of carbon fillers in a polymer matrix. Int. J. Therm. Sci. 2010, 49, 2272–2281. [Google Scholar] [CrossRef]
- Chiavazzo, E.; Karlin, I.V.; Gorban, A.N.; Boulouchos, K. Combustion simulation via lattice Boltzmann and reduced chemical kinetics. J. Stat. Mech. Theory Exp. 2009, 6, P06013. [Google Scholar] [CrossRef]
- Chiavazzo, E.; Karlin, I.V.; Gorban, A.N.; Boulouchos, K. Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations. Combust. Flame 2010, 157, 1833–1849. [Google Scholar] [CrossRef]
- Chiavazzo, E.; Karlin, I.V.; Gorban, A.N.; Boulouchos, K. Efficient simulations of detailed combustion fields via the lattice Boltzmann method. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 494–517. [Google Scholar]
- Di Rienzo, A.F.; Asinari, P.; Chiavazzo, E.; Prasianakis, N.I.; Mantzaras, J. Lattice Boltzmann model for reactive flow simulations. Europhys. Lett. 2012, 98, 34001. [Google Scholar] [CrossRef]
- Asinari, P.; von Spakovsky, M.R.; Quaglia, M.C.; Kasula, V. Direct numerical calculation of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method. J. Power Sources 2007, 170, 359–375. [Google Scholar] [CrossRef]
- Salomov, U.R.; Chiavazzo, E.; Asinari, P. Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells. Comput. Math. Appl. 2014, 67, 393–411. [Google Scholar] [CrossRef]
- Asinari, P. Lattice Boltzmann scheme for mixture modeling: Analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier–Stokes equations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 056701. [Google Scholar] [CrossRef] [PubMed]
- Asinari, P. Multiple-relaxation-time lattice Boltzmann scheme for homogeneous mixture flows with external force. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008, 77, 056706. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kandasamy, S.; Orszag, S.; Shock, R.; Succi, S.; Yakhot, V. Extended Boltzmann kinetic equation for turbulent flows. Science 2003, 301, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Ansumali, S.; Karlin, I.V.; Succi, S. Kinetic theory of turbulence modeling: Smallness parameter, scaling and microscopic derivation of Smagorinsky model. Physica A 2004, 338, 379–394. [Google Scholar] [CrossRef]
- Asinari, P.; Luo, L.-S. A Consistent Lattice Boltzmann Equation with Baroclinic Coupling for Mixtures. J. Comput. Phys. 2008, 227, 3878–3895. [Google Scholar] [CrossRef]
- Asinari, P.; Ohwada, T.; Chiavazzo, E.; di Rienzo, A.F. Link-wise artificial compressibility method. J. Comput. Phys. 2012, 231, 5109–5143. [Google Scholar] [CrossRef]
- Brownlee, R.A.; Gorban, A.N.; Levesley, J. Nonequilibrium entropy limiters in lattice Boltzmann methods. Physica A 2008, 387, 385–406. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Eggels, J.M.G. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow 1996, 17, 307–323. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Liao, Y.; Qian, D.Y.; McLaughlin, J.B.; Derksen, J.J.; Kontomaris, K. Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid. J. Comput. Phys. 2002, 181, 675–704. [Google Scholar] [CrossRef]
- Krafczyk, M.; Tölke, J.; Luo, L.-S. Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B 2003, 17, 33–39. [Google Scholar] [CrossRef]
- Geller, S.; Uphoff, S.; Krafczyk, M. Turbulent jet computations based on MRT and Cascaded Lattice Boltzmann models. Comput. Math. Appl. 2013, 65, 1956–1966. [Google Scholar] [CrossRef]
- Tekeira, C.M. Incorporating turbulence models into the Lattice-boltzmann method. Int. J. Modern Phys. C 1998, 9, 1159–1175. [Google Scholar]
- Kumar, G.; Girimaji, S.S. Progress in the application of lattice Boltzmann method for turbulent flows. In Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–23 June 2012; pp. 1104–1111.
- Scott-Pomerantz, C.D. The k-epsilon Model in the Theory of Turbulence. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2004. [Google Scholar]
- Tikhomirov, V.M. Equations of Motion of an Incompressible Turbulent Fluid. Available online: http://dx.doi.org/10.1007/978-94-011-3030-1_48 (accessed on 30 March 2016).
- Harlow, F.H.; Nakayama, P.I. Transport of Turbulence-Energy Decay Rate; Technical Report for Los Alamos Science Laboratory: Los Alamos, NM, USA, January 1968. [Google Scholar]
- Daly, B.J.; Harlow, F.H. Transport Equations in Turbulence. Phys. Fluids 1970, 13, 2634–2649. [Google Scholar] [CrossRef]
- Hanjalic, K.; Launder, B.E. A Reynolds-stress model of turbulence and its application to asymmetric shear flows. J. Fluid Mech. 1972, 52, 609–638. [Google Scholar] [CrossRef]
- Jones, W.P.; Launder, B.E. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 1972, 15, 301–314. [Google Scholar] [CrossRef]
- Launder, B.E.; Morse, A.; Rodi, W.; Spalding, D.B. The prediction of free shear flows: A comparison of the performance of six turbulence models. In Proceedings of the NASA Conference on Free Shear Flows, Hampton, VA, USA, 20–21 July 1972.
- Launder, B.E.; Spalding, D.B. Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Beck, C. Application of generalized thermostatistics to fully developed turbulence. Phys. A Stat. Mech. Appl. 2000, 277, 115–123. [Google Scholar] [CrossRef]
- Ciliberto, S.; Garnier, N.; Hernandez, S.; Lacpatia, C.; Pinton, J.-F.; Ruiz Chavarria, G. Experimental test of the Gallavotti-Cohen fluctuation theorem in turbulent flows. Phys. A Stat. Mech. Appl. 2004, 340, 240–250. [Google Scholar] [CrossRef]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Interscience: Woburn, MA, USA, 1961. [Google Scholar]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Jou, D.; Restuccia, L. Mesoscopic transport equations and contemporary thermodynamics: An introduction. Contemp. Phys. 2011, 52, 465–474. [Google Scholar] [CrossRef]
- Jou, D.; Casas-Vázquez, J.; Lebon, G. Extended Irreversible Thermodynamics; Springer-Verlag: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Glavatskiy, K. Multicomponent Interfacial Transport as Described by the Square Gradient Model: Evaporation and Condensation. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, September 2009. [Google Scholar]
- Bedeaux, D.; Johannessen, E.; Røsjorde, A. The nonequilibrium van der Waals square gradient model. (I). The model and its numerical solution. Phys. A Stat. Mech. Appl. 2003, 330, 329–353. [Google Scholar] [CrossRef]
- Johannessen, E.; Bedeaux, D. The nonequilibrium van der Waals square gradient model. (II). Local equilibrium of the Gibbs surface. Phys. A Stat. Mech. Appl. 2003, 330, 354–372. [Google Scholar] [CrossRef]
- Johannessen, E.; Bedeaux, D. The nonequilibrium van der Waals square gradient model. (III). Heat and mass transfer coefficients. Phys. A Stat. Mech. Appl. 2004, 336, 252–270. [Google Scholar] [CrossRef]
- Safari, M.; Sheikhi, M.R.H.; Janbozorgi, M.; Metghalchi, H. Entropy transport equation in large eddy simulation for exergy analysis of turbulent combustion systems. Entropy 2010, 12, 434–444. [Google Scholar] [CrossRef]
- Farran, R.; Chakraborty, N. A direct numerical simulation-based analysis of entropy generation in turbulent premixed flames. Entropy 2013, 15, 1540–1566. [Google Scholar] [CrossRef]
- Safari, M.; Hadi, F.; Sheikhi, M.R.H. Progress in the Prediction of Entropy Generation in Turbulent Reacting Flows Using Large Eddy Simulation. Entropy 2014, 16, 5159–5177. [Google Scholar] [CrossRef]
- Yarmand, H.; Ahmadi, G.; Gharehkhani, S.; Kazi, S.N.; Safaei, M.R.; Alehashem, M.S.; Mahat, A.B. Entropy generation during turbulent flow of zirconia-water and other nanofluids in a square cross section tube with a constant heat flux. Entropy 2014, 16, 6116–6132. [Google Scholar] [CrossRef]
- Jansen, K.E. The Role of Entropy in Turbulence and Stabilized Finite Element Methods. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1993. [Google Scholar]
- Hauke, G. A Unified Approach to Compressible and Incompressible Flows and a New Entropy-Consistent Formulation of the K-Epsilon Model. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1995. [Google Scholar]
- Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int. J. Heat Mass Transf. 2004, 47, 2205–2215. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Entropy production calculation for turbulent shear flows and their implementation in cfd codes. Int. J. Heat Fluid Flow 2005, 26, 672–680. [Google Scholar] [CrossRef]
- Herwig, H.; Kock, F. Local entropy production in turbulent shear flows: A tool for evaluating heat transfer performance. J. Therm. Sci. 2006, 15, 159–167. [Google Scholar] [CrossRef]
- Habchi, C.; Lemenand, T.; Della Valle, D.; Pacheco, L.; Le Corre, O.; Peerhossaini, H. Entropy production and field synergy principle in turbulent vortical flows. Int. J. Therm. Sci. 2011, 50, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Adeyinka, O.B.; Naterer, G.F. Modeling of entropy production in turbulent flows. J. Fluids Eng. Trans. ASME 2004, 126, 893–899. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-time Processes; CRC Press: Oxford, UK, 1995. [Google Scholar]
- Bejan, A.; Moran, M.J. Thermal Design and Optimization; John Wiley & Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Liepmann, H.W.; Roshko, A. Elements of Gasdynamics; John Wiley & Sons Inc.: New York, NY, USA, 2002. [Google Scholar]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Cercignani, C. The Boltzmann Equation and Its Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
- De Rosis, A.; Falcucci, G.; Ubertini, S.; Ubertini, F. Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method. J. Fluids Struct. 2014, 49, 516–533. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys. Condens. Matter 2009, 22, 035104. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, N.J.; Dooley, P.N. Models of Flow-Induced Loading on Blood Cells in Laminar and Turbulent Flow, with Application to Cardiovascular Device Flow. Ann. Biomed. Eng. 2007, 35, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Meng, J.; Guo, Z. Turbulent flow and heat transfer in discrete double inclined ribs tube. Int. J. Heat Mass Transf. 2009, 52, 962–970. [Google Scholar] [CrossRef]
- Cola, F.; de Gennaro, M.; Perocchio, D.; Canuto, E.; Daniele, S.; Napoli, P.; Rivalta, G.T.; Chiavazzo, E.; Fasano, M.; Asinari, P. Integrated receivers with bottom subcooling for automotive air conditioning: Detailed experimental study of their filling capacity. Int. J. Refrig. 2016, 62, 72–84. [Google Scholar] [CrossRef]
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Henderson-Sellers, Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 1997, 24, 502–509. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asinari, P.; Fasano, M.; Chiavazzo, E. A Kinetic Perspective on k‒ε Turbulence Model and Corresponding Entropy Production. Entropy 2016, 18, 121. https://doi.org/10.3390/e18040121
Asinari P, Fasano M, Chiavazzo E. A Kinetic Perspective on k‒ε Turbulence Model and Corresponding Entropy Production. Entropy. 2016; 18(4):121. https://doi.org/10.3390/e18040121
Chicago/Turabian StyleAsinari, Pietro, Matteo Fasano, and Eliodoro Chiavazzo. 2016. "A Kinetic Perspective on k‒ε Turbulence Model and Corresponding Entropy Production" Entropy 18, no. 4: 121. https://doi.org/10.3390/e18040121
APA StyleAsinari, P., Fasano, M., & Chiavazzo, E. (2016). A Kinetic Perspective on k‒ε Turbulence Model and Corresponding Entropy Production. Entropy, 18(4), 121. https://doi.org/10.3390/e18040121