Feynman’s Ratchet and Pawl with Ecological Criterion: Optimal Performance versus Estimation with Prior Information
Abstract
:1. Introduction
2. Optimal Performance of the Heat Engine
2.1. Two-Parameter Ecological Optimization of Heat Engine
2.2. Prior Information and Estimation for Heat Engine
3. Optimal Performance as a Refrigerator
3.1. Two-Parameter Ecological Optimization for the Refrigerator
3.2. Prior Information and Estimation for Refrigerator
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- De Vos, A. Endoreversible Thermodynamics of Solar Energy Conversion; Oxford Science Publications, Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Salamon, P.; Nulton, J.; Siragusa, G.; Andersen, T.; Limon, A. Principles of control thermodynamics. Energy 2001, 26, 307–319. [Google Scholar] [CrossRef]
- Berry, R.S.; Kazakov, V.A.; Sieniutycz, S.; Szwast, Z.; Tsirlin, A.M. Thermodynamic Optimization of Finite Time Processes; Wiley: Chichester, UK, 1999. [Google Scholar]
- Chen, L.G.; Wu, C.; Sun, F.R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 1999, 24, 327–359. [Google Scholar] [CrossRef]
- Feidt, M. Optimal thermodynamics— New upperbounds. Entropy 2009, 11, 529–547. [Google Scholar] [CrossRef]
- Andresen, B. Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.L.; Chen, L.G.; Sun, F.R. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy 2016, 18, 139. [Google Scholar] [CrossRef]
- Esposito, M.; Kawai, R.; Lindenberg, K.; Broeck, C. Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 2010, 105, 150603. [Google Scholar] [CrossRef] [PubMed]
- Broeck, C. Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 2005, 95, 190602. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Lindenberg, K.; Broeck, C. Universality of efficiency at maximum power. Phys. Rev. Lett. 2005, 102, 130602. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Chen, J. A class of irreversible Carnot refrigeration cycles with a general heat transfer law. J. Phys. D Appl. Phys. 1990, 23, 136–141. [Google Scholar] [CrossRef]
- Apertet, Y.; Ouerdane, H.; Michot, A.; Goupil, C.; Lecoeur, P. On the efficiency at maximum cooling power. EPL 2013, 103, 40001. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Hovhannisyan, K.; Mahler, G. Optimal refrigerator. Phys. Rev. E 2010, 81, 051129. [Google Scholar] [CrossRef] [PubMed]
- De Tomás, C.; Hernández, A.C.; Roco, J.M.M. Optimal low symmetric dissipation Carnot engines and refrigerators. Phys. Rev. E 2012, 85, 010104. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Tu, Z.C. Universality of energy conversion efficiency for optimal tight-coupling heat engines and refrigerators. J. Phys. A Math. Theor. 2013, 46, 402001. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Tu, Z.C.; Hernández, A.C.; Roco, J.M.M. Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators. Phys. Rev. E 2012, 86, 011127. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, F.; Ma, Y.; He, J.; Wang, J.; Hernández, A.C.; Roco, J.M.M. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation. Phys. Rev. E 2013, 88, 062115. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ayala, J.; Arias-Hernandez, L.A.; Angulo-Brown, F. Connection between maximum-work and maximum-power thermal cycles. Phys. Rev. E 2013, 88, 052142. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Salas, N.; Hernández, A.C. Harmonic quantum heat devices: Optimum-performance regimes. Phys. Rev. E 2004, 70, 046134. [Google Scholar] [CrossRef] [PubMed]
- Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [Google Scholar] [CrossRef] [Green Version]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Mahler, G. Quantum Thermodynamic Processes: Energy and Information Flow at the Nanoscale; Pan Stanford: Boca Raton, FL, USA, 2014. [Google Scholar]
- Hernández, A.C.; Medina, A.; Roco, J.M.M.; White, J.A.; Velasco, S. Unified optimization criterion for energy converters. Phys. Rev. E 2001, 63, 037102. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Brown, F. An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 1991, 69, 7465–7469. [Google Scholar] [CrossRef]
- Bejan, A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 1996, 79, 1191–1218. [Google Scholar] [CrossRef]
- Salamon, P.; Nitzan, A.; Andresen, B.; Berry, R. Minimum entropy production and the optimization of heat engines. Phys. Rev. A 1980, 21, 2115–2129. [Google Scholar] [CrossRef]
- Velasco, S.; Roco, J.M.M.; Medina, A.; Hernández, A.C. Feynman’s ratchet optimization: Maximum power and maximum efficiency regimes. J. Phys. D Appl. Phys. 2001, 34, 1000–1006. [Google Scholar] [CrossRef]
- Tu, Z.C. Efficiency at maximum power of Feynman’s ratchet as a heat engine. J. Phys. A Math. Theor. 2008, 41, 312003. [Google Scholar] [CrossRef]
- Lebon, G.; Jou, D.; Casas-Vázquez, J. Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers; Springer: Berlin, Germany, 2008. [Google Scholar]
- Johal, R.S. Universal efficiency at optimal work with Bayesian statistics. Phys. Rev. E 2010, 82, 061113. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Johal, R.S. Expected behavior of quantum thermodynamic machines with prior information. Phys. Rev. E 2012, 85, 041146. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Aneja, P.; Johal, R.S. Informative priors and the analogy between quantum and classical heat engines. Phys. Scr. 2012, T151, 014031. [Google Scholar] [CrossRef]
- Aneja, P.; Johal, R.S. Prior information and inference of optimality in thermodynamic processes. J. Phys. A Math. Theor. 2013, 46, 365002. [Google Scholar] [CrossRef]
- Johal, R.S. Efficiency at optimal work from finite source and sink: A probabilistic perspective. J. Non-Equilib. Thermodyn. 2015, 40, 1–12. [Google Scholar] [CrossRef]
- Jeffreys, H. Theory of Probability, 3rd ed.; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Jaynes, E.T. Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 227–241. [Google Scholar] [CrossRef]
- Thomas, G.; Johal, R.S. Estimating performance of Feynman’s ratchet with limited information. J. Phys. A Math. Theor. 2015, 48, 335002. [Google Scholar] [CrossRef]
- Long, R.; Liu, W. Performance of micro two-level heat devices with prior information. Phys. Lett. A 2015, 379, 1979–1982. [Google Scholar] [CrossRef]
- Schmiedl, T.; Seifert, U. Efficiency at maximum power: An analytically solvable model for stochastic heat engines. EPL 2008, 81, 20003. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, B.H.; Chen, J.C. Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine. Eur. Phys. J. B 2006, 53, 481–485. [Google Scholar] [CrossRef]
- Barato, A.C.; Seifert, U. An autonomous and reversible Maxwell’s demon. EPL 2013, 101, 60001. [Google Scholar] [CrossRef]
- Johal, R.S.; Rai, R.; Mahler, G. Bounds on estimated efficiency from inference. Found. Phys. 2014, 85. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Narosa Publishing House: New Delhi, India, 2008. [Google Scholar]
- Parrondo, J.M.R.; Español, P. Criticism of Feynman’s analysis of the ratchet as an engine. Am. J. Phys. 1996, 64, 1125–1130. [Google Scholar] [CrossRef]
- Chen, L.G.; Ding, Z.M.; Sun, F.R. Optimum performance analysis of Feynman’s engine as cold and hot ratchets. J. Non-Equilib. Thermodyn. 2011, 36, 155–177. [Google Scholar] [CrossRef]
- Yan, Z. Comment on “An ecological optimization criterion for finite-time heat engines”. J. Appl. Phys. 1993, 73, 3583. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, L. Optimization of the rate of exergy output for an endoreversible Carnot refrigerator. J. Phys. D Appl. Phys. 1996, 29, 3017–3021. [Google Scholar] [CrossRef]
- Zhou, J.L.; Chen, L.G.; Ding, Z.M.; Sun, F.R. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines. Energy 2016, 111, 306–312. [Google Scholar] [CrossRef]
- Long, R.; Liu, W. Ecological optimization and coefficient of performance bounds of general refrigerators. Physica A 2016, 443, 14–21. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Qin, X.Y.; Xie, Z.H. Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heats of working fluid. Eur. Phys. J. Plus 2017, 132, 209. [Google Scholar] [CrossRef]
- Qin, X.Y.; Chen, L.G.; Xia, S.J. Ecological performance of four-temperature-level absorption heat transformer with heat resistance, heat leakage and internal irreversibility. Int. J. Heat Mass Transf. 2017, 114, 252–257. [Google Scholar] [CrossRef]
- Abe, S. Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics. EPL 2014, 108, 40008. [Google Scholar] [CrossRef]
- Sánchez-Salas, L.; López-Palacios, L.; Velasco, S.; Hernández, A.C. Optimization criteria, bounds and, efficiencies of heat engines. Phys. Rev. E. 2010, 82, 051101. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.G.; Liu, N.; He, J.Z. Optimum analysis of a Brownian refrigerator. Phys. Rev. E 2013, 87, 022139. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Yang, P.; Tu, Z.C. Coefficient of performance at maximum χ-criterion for Feynman ratchet as a refrigerator. Commun. Theor. Phys. 2014, 62, 589–595. [Google Scholar] [CrossRef]
- Ai, B.Q.; Wang, L.; Liu, L.G. Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances. Phys. Lett. A 2006, 352, 286–290. [Google Scholar] [CrossRef]
- Lin, B.; Chen, J. Performance characteristics and parametric optimum criteria of a brownian micro-refrigerator in a spatially periodic temperature field. J. Phys. A Math. Theor. 2009, 42, 075006. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Johal, R.S. Feynman’s Ratchet and Pawl with Ecological Criterion: Optimal Performance versus Estimation with Prior Information. Entropy 2017, 19, 576. https://doi.org/10.3390/e19110576
Singh V, Johal RS. Feynman’s Ratchet and Pawl with Ecological Criterion: Optimal Performance versus Estimation with Prior Information. Entropy. 2017; 19(11):576. https://doi.org/10.3390/e19110576
Chicago/Turabian StyleSingh, Varinder, and Ramandeep S. Johal. 2017. "Feynman’s Ratchet and Pawl with Ecological Criterion: Optimal Performance versus Estimation with Prior Information" Entropy 19, no. 11: 576. https://doi.org/10.3390/e19110576
APA StyleSingh, V., & Johal, R. S. (2017). Feynman’s Ratchet and Pawl with Ecological Criterion: Optimal Performance versus Estimation with Prior Information. Entropy, 19(11), 576. https://doi.org/10.3390/e19110576