Entropy, Topological Theories and Emergent Quantum Mechanics
Abstract
:1. Motivation
2. A Quasistatic Mechanics
3. The Thermostatics Dual to Quasistatic Mechanics
4. The Quasistatic Mechanics Dual to Thermostatics
4.1. The Ideal Gas
4.2. Motion along Isoentropic Surfaces
4.3. Motion across Isoentropic Surfaces
- (i)
- The compact configuration space has the advantage that, due to energy quantisation, one can univocally identify a nonvanishing state of least kinetic energy. On the noncompact configuration space , the allowed energy eigenvalues run over , and no nonvanishing state of least energy exists.
- (ii)
- Results analogous to those presented above would continue to hold if the free quantum particle were placed in a cubic box of volume , with vanishing boundary conditions for the wavefunction on the sides of the cube. The use of Cartesian coordinates renders isoentropic surfaces (now cubes) somewhat clumsier to work with than spheres, but the expectation value of the entropy (see Equation 28 below) remains metric independent, and also the Hilbert space continues to be one-dimensional.
- (iii)
- Analogous results would also hold if we worked in d–dimensional Euclidean space , viz: finite dimensionality of the Hilbert space, and metric independence of the expectation of the entropy.
4.4. A Metric Free Entropy
4.5. The Quantum Mechanical Partition Function
5. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Elze, H.-T. Multipartite Cellular Automata and the Superposition Principle. Int. J. Quantum Inf. 2016, 14, 1640001. [Google Scholar] [CrossRef]
- Elze, H.-T. Quantum Models as Classical Cellular Automata. arXiv 2016. [Google Scholar]
- Hooft, G. The Mathematical Basis for Deterministic Quantum Mechanics. J. Phys. Conf. Ser. 2007, 67, 012015. [Google Scholar] [CrossRef]
- Hooft, G. The Cellular Automaton Interpretation of Quantum Mechanics. In Fundametal Theories of Physics; Springer: Berlin/Heidelberg, Germany, 2016; Volume 185. [Google Scholar]
- Fernández de Córdoba, P.; Isidro, J.M.; Vazquez Molina, J. The Holographic Quantum. Found. Phys. 2016, 46, 787–803. [Google Scholar] [CrossRef]
- Onsager, L.; Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 1953, 91, 1505. [Google Scholar] [CrossRef]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Interscience: New York, NY, USA, 1961. [Google Scholar]
- Callen, H. Thermodynamics and an Introduction to Thermostatics; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Baez, J.; Pollard, B. Quantropy. Entropy 2015, 17, 772–789. [Google Scholar] [CrossRef]
- Matone, M. Thermodynamique Cachée des Particules’ and the Quantum Potential. Ann. Fond. Broglie 2012, 37, 177–185. [Google Scholar]
- Padmanabhan, T. Thermodynamical Aspects of Gravity: New Insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef]
- Penrose, R. Black Holes, Quantum Theory and Cosmology. J. Phys. Conf. Ser. 2009, 174, 012001. [Google Scholar] [CrossRef]
- Svozil, K. Space and Time in a Quantized World. Int. J. Theor. Phys. 2015, 54, 4376–4385. [Google Scholar] [CrossRef]
- Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological Field Theory. Phys. Rep. 1991, 209, 129–340. [Google Scholar] [CrossRef]
- Dirac, P. Lectures on Quantum Mechanics; Dover: New York, NY, USA, 2001. [Google Scholar]
- Verlinde, E. On the Origin of Gravity and the Laws of Newton. J. High Energy Phys. 2011. [Google Scholar] [CrossRef]
- Kapusta, J.; Gale, C. Finite-Temperature Field Theory: Principles and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- McKean, H.; Singer, I. Curvature and the Eigenvalues of the Laplacian. J. Differ. Geom. 1967, 1, 43–69. [Google Scholar]
- Schwarz, A. Quantum Field Theory and Topology. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2010; Volume 307. [Google Scholar]
- Schwarz, A. Topology for Physicists. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1994; Volume 308. [Google Scholar]
- Ruppeiner, G. Riemannian Geometry in Thermodynamic Fluctuation Theory. Rev. Mod. Phys. 1995, 67, 605. [Google Scholar] [CrossRef]
- Bravetti, A.; López-Monsalvo, C.; Nettel, F. Conformal Gauge Transformations in Thermodynamics. Entropy 2015, 17, 6150–6168. [Google Scholar] [CrossRef]
- Fernández de Córdoba, P.; Isidro, J.M. Generalised Complex Geometry in Thermodynamical Fluctuation Theory. Entropy 2015, 17, 5888–5902. [Google Scholar] [CrossRef]
- Smolin, L. Quantum Mechanics and the Principle of Maximal Variety. arXiv 2015. [Google Scholar]
- Calmet, X. Quantum Mechanics, Gravity and Modified Quantization Relations. Philos. Trans. R. Soc. 2015, A373, 20140244. [Google Scholar] [CrossRef] [PubMed]
- Codesido, S.; Mariño, M. Holomorphic Anomaly and Quantum Mechanics. arXiv 2016. [Google Scholar]
- Mariño, M. Chern–Simons Theory, Matrix Models, and Topological Strings. In International Series of Monographs on Physics; Oxford Univesity Press: Oxford, UK, 2005; Volume 131. [Google Scholar]
- Cabrera, D.; Fernández de Córdoba, P.; Isidro, J.M. Amplitude, phase, and complex analyticity. arXiv 2017. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera, D.; De Córdoba, P.F.; Isidro, J.M.; Molina, J.V. Entropy, Topological Theories and Emergent Quantum Mechanics. Entropy 2017, 19, 87. https://doi.org/10.3390/e19030087
Cabrera D, De Córdoba PF, Isidro JM, Molina JV. Entropy, Topological Theories and Emergent Quantum Mechanics. Entropy. 2017; 19(3):87. https://doi.org/10.3390/e19030087
Chicago/Turabian StyleCabrera, D., P. Fernández De Córdoba, J. M. Isidro, and J. Vazquez Molina. 2017. "Entropy, Topological Theories and Emergent Quantum Mechanics" Entropy 19, no. 3: 87. https://doi.org/10.3390/e19030087
APA StyleCabrera, D., De Córdoba, P. F., Isidro, J. M., & Molina, J. V. (2017). Entropy, Topological Theories and Emergent Quantum Mechanics. Entropy, 19(3), 87. https://doi.org/10.3390/e19030087