The Quantum Harmonic Otto Cycle
Abstract
:1. Introduction
2. The Quantum Otto Cycle
- The hot isochore: heat is transferred from the hot bath to the working medium without volume change.
- The power adiabat: the working medium expands, producing work, while isolated from the hot and cold reservoirs.
- The cold isochore: heat is transferred from the working medium to the cold bath without volume change.
- The compression adiabat: the working medium is compressed, consuming power while isolated from the hot and cold reservoirs, closing the cycle.
- The hot isochore: heat is transferred from the hot bath to the working medium without change in the external parameter . The stroke is described by the propagator .
- The expansion adiabat: the working medium reduces its energy scale. The harmonic frequency changes from to , with , producing work while isolated from the hot and cold reservoirs. The stroke is described by the propagator .
- The cold isochore: heat is transferred from the working medium to the cold bath without change in the external parameter . The stroke is described by the propagator .
- The compression adiabat: the working medium increases its energy scale. The harmonic frequencies increase from to , consuming power while isolated from the hot and cold reservoirs. The stroke is described by the propagator .
2.1. Quantum Dynamics of the Working Medium
3. Quantum Thermodynamics
- The Hamiltonian .
- The Lagrangian .
- The position momentum correlation .
Entropy Balance
4. The Dynamics of the Quantum Otto Cycle
4.1. Heisenberg Dynamics of Thermalisation on the Isochores
4.2. The Dynamics on the Adiabats and Quantum Friction
4.3. The Influence of Noise on the Adiabats
4.4. The Sudden Limit
4.5. Effects of an Exceptional Point on the Dynamics on the Adiabat
5. Closing the Cycle
5.1. Limit Cycle
5.2. Engine Operation and Performance
5.2.1. Optimizing the Work per Cycle
5.2.2. Optimizing the Performance of the Engine for Frictionless Conditions
5.2.3. The Engine in the Sudden Limit
5.2.4. Work Fluctuation in the Engine Cycle
5.2.5. Quantum Fuels: Squeezed Thermal Bath
5.3. Closing the Cycle: The Performance of the Refrigerator
5.3.1. Frictionless Refrigerator
5.3.2. The Sudden Refrigerator
5.3.3. The Quest to Reach Absolute Zero
- The entropy of any pure substance in thermodynamic equilibrium approaches zero as the temperature approaches zero.
- It is impossible by any procedure—no matter how idealised—to reduce any assembly to absolute zero temperature in a finite number of operations [138].
6. Overview
Acknowledgments
Conflicts of Interest
Abbreviations
EP | Exceptional Point |
L-GKS | Lindblad, Goirini Kossakowski Sudarshan |
COP | Coefficient of Performance |
CP | Completely Positive |
References
- Carnot, S. Réflexions sur la Puissance Motrice du feu et sur les Machines Propres à Développer Cette Puissance. Annales Scientifiques de l’Ecole Normale 1872, 1, 393–457. (In French) [Google Scholar]
- Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science 2016, 352, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Andresen, B.; Berry, R.S.; Nitzan, A.; Salamon, P. Thermodynamics in finite time. I. The step-Carnot cycle. Phys. Rev. A 1977, 15, 2086–2093. [Google Scholar] [CrossRef]
- Salamon, P.; Nulton, J.; Siragusa, G.; Andersen, T.R.; Limon, A. Principles of control thermodynamics. Energy 2001, 26, 307–319. [Google Scholar] [CrossRef]
- Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A Math. Gen. 1979, 12, L103–L107. [Google Scholar] [CrossRef]
- Kosloff, R. A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 1984, 80, 1625–1631. [Google Scholar] [CrossRef]
- Scovil, H.; Schulz-DuBois, E. Three-level masers as heat engines. Phys. Rev. Lett. 1959, 2, 262–263. [Google Scholar] [CrossRef]
- Kosloff, R.; Levy, A. Quantum Heat Engines and Refrigerators: Continuous Devices. Annu. Rev. Phys. Chem. 2014, 65, 365–393. [Google Scholar] [CrossRef] [PubMed]
- Geva, E.; Kosloff, R. A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 1992, 96, 3054–3067. [Google Scholar]
- Geva, E.; Kosloff, R. On the classical limit of quantum thermodynamics in finite time. J. Chem. Phys. 1992, 97, 4398–4412. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Meister, B.K. Entropy and temperature of a quantum Carnot engine. Proc. R. Soc. Lond. A 2002, 458, 1519–1526. [Google Scholar] [CrossRef]
- Lloyd, S. Quantum-mechanical Maxwell’s demon. Phys. Rev. A 1997, 56, 3374–3382. [Google Scholar] [CrossRef]
- Esposito, M.; Kawai, R.; Lindenberg, K.; Van den Broeck, C. Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 2010, 105, 150603. [Google Scholar] [PubMed]
- Feldmann, T.; Geva, E.; Kosloff, R.; Salamon, P. Heat engines in finite time governed by master equations. Am. J. Phys. 1996, 64, 485–492. [Google Scholar] [CrossRef]
- Quan, H.; Liu, Y.X.; Sun, C.; Nori, F. Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 2007, 76, 031105. [Google Scholar] [CrossRef] [PubMed]
- He, J.; He, X.; Tang, W. The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle. Sci. China Ser. G Phys. Mech. Astron. 2009, 52, 1317–1323. [Google Scholar] [CrossRef]
- Henrich, M.J.; Rempp, F.; Mahler, G. Quantum thermodynamic Otto machines: A spin-system approach. Eur. Phys. J. Spec. Top. 2007, 151, 157–165. [Google Scholar] [CrossRef]
- Agarwal, G.; Chaturvedi, S. Quantum dynamical framework for Brownian heat engines. Phys. Rev. E 2013, 88, 012130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Bariani, F.; Meystre, P. Quantum optomechanical heat engine. Phys. Rev. Lett. 2014, 112, 150602. [Google Scholar] [PubMed]
- He, J.; Chen, J.; Hua, B. Quantum refrigeration cycles using spin-12 systems as working substance. Phys. Rev. E 2002, 65, 036145. [Google Scholar] [CrossRef] [PubMed]
- Novikov, I. The efficiency of atomic power stations (a review). J. Nucl. Energy (1954) 1958, 7, 125–128. [Google Scholar] [CrossRef]
- Curzon, F.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Kosloff, R.; Feldmann, T. Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 2002, 65, 055102. [Google Scholar]
- Rezek, Y.; Kosloff, R. Irreversible performance of a quantum harmonic heat engine. New J. Phys. 2006, 8, 83. [Google Scholar] [CrossRef]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Gemmer, J.; Michel, M.; Mahler, G. Introduction. In Quantum Thermodynamics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–6. [Google Scholar]
- Talkner, P.; Hänggi, P. Aspects of quantum work. Phys. Rev. E 2016, 93, 022131. [Google Scholar] [CrossRef] [PubMed]
- Seifert, U. First and second law of thermodynamics at strong coupling. Phys. Rev. Lett. 2016, 116, 020601. [Google Scholar] [PubMed]
- Carrega, M.; Solinas, P.; Sassetti, M.; Weiss, U. Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett. 2016, 116, 240403. [Google Scholar] [PubMed]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics: A topical review. J. Phys. A Math. Theor. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [Google Scholar] [CrossRef]
- Otto, N.A. Nicolaus August Otto. U.S. Patent 365,701, 28 June 1887. [Google Scholar]
- Callen, H.B. Thermodynamics & an Introduction to Thermostatistics; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kraus, K. General state changes in quantum theory. Ann. Phys. 1971, 64, 311–335. [Google Scholar]
- Uzdin, R.; Levy, A.; Kosloff, R. Quantum Equivalence and Quantum Signatures in Heat Engines. Phys. Rev. X 2015, 5, 031044. [Google Scholar]
- Uzdin, R.; Levy, A.; Kosloff, R. Quantum heat machines equivalence and work extraction beyond Markovianity, and strong coupling via heat exchangers. Entropy 2016, 18, 124. [Google Scholar] [CrossRef]
- Boyer, T.H. Thermodynamics of the harmonic oscillator: Wien’s displacement law and the Planck spectrum. Am. J. Phys. 2003, 71, 866–870. [Google Scholar] [CrossRef]
- Neumann, J.V. Mathematical Foundations of Quantum Mechanics; Number 2; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Plastina, F.; Alecce, A.; Apollaro, T.; Falcone, G.; Francica, G.; Galve, F.; Gullo, N.L.; Zambrini, R. Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 2014, 113, 260601. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Ingarden, R.S.; Kossakowski, A. On the Connection of Nonequilibrium Information Thermodynamics with Non-Hamiltonian Quantum Mechanics of Open Systems. Ann. Phys. 1975, 89, 451–485. [Google Scholar] [CrossRef]
- Louisell, W.H.; Louisell, W.H. Quantum Statistical Properties of Radiation; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Lindblad, G. Brownian motion of a quantum harmonic oscillator. Rep. Math. Phys. 1976, 10, 393–406. [Google Scholar] [CrossRef]
- Braun, E.; Godoy, S. Quantum statistical effects of the motion of an oscillator interacting with a radiation field. Phys. A Stat. Mech. Appl. 1977, 86, 337–354. [Google Scholar]
- Um, C.I.; Yeon, K.H.; George, T.F. The quantum damped harmonic oscillator. Phys. Rep. 2002, 362, 63–192. [Google Scholar] [CrossRef]
- Gardiner, C.; Zoller, P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 56. [Google Scholar]
- Carmichael, H. An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles, October 28 to November 4, 1991; Springer: Berlin/Heidelberg, Germany, 2009; Volume 18. [Google Scholar]
- Spohn, H.; Lebowitz, J.L. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 2007, 38, 109–142. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar]
- Katz, A. Principles of Statistical Mechanics: The Information Theory Approach; Freeman: San Francisco, CA, USA, 1967. [Google Scholar]
- Alhassid, Y.; Levine, R. Connection between the maximal entropy and the scattering theoretic analyses of collision processes. Phys. Rev. A 1978, 18, 89–116. [Google Scholar]
- Andersen, H.C.; Opeenheim, I.; Shuler, K.E.; Weiss, H.H. Exact Conditions for the preservation of a canonical distribution in Markovian relaxation processes. J. Math. Phys. 1964, 5, 522–536. [Google Scholar] [CrossRef]
- Wei, J.; Norman, E. On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Am. Math. Soc. 1963, 15, 327–334. [Google Scholar] [CrossRef]
- Casimir, H. Über die Konstruktion einer zu den irreduzibelen Darstellung halbeinfacher kontinuerlichen Gruppen gehörigen Differential-gleichung. Proc. R. Akad. AMST 1931, 34, 844. [Google Scholar]
- Perelomov, A.M.; Popov, V.S. Casimir operators for semisimple Lie groups. Math. USSR-Izv. 1968, 2, 1313–1335. [Google Scholar] [CrossRef]
- Boldt, F.; Nulton, J.D.; Andresen, B.; Salamon, P.; Hoffmann, K.H. Casimir companion: An invariant of motion for Hamiltonian systems. Phys. Rev. A 2013, 87, 022116. [Google Scholar]
- Banin, U.; Bartana, A.; Ruhman, S.; Kosloff, R. Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses. J. Chem. Phys. 1994, 101, 8461–8481. [Google Scholar] [CrossRef]
- Girolami, D. Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 2014, 113, 170401. [Google Scholar] [CrossRef] [PubMed]
- Naudts, J.; de Galway, W.O. On the BCH formula of Rezek and Kosloff. Phys. A Stat. Mech. Appl. 2011, 390, 3317–3319. [Google Scholar] [CrossRef]
- Kim, M.; De Oliveira, F.; Knight, P. Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 1989, 40, 2494–2503. [Google Scholar]
- Ilievski, E.; De Nardis, J.; Wouters, B.; Caux, J.S.; Essler, F.H.; Prosen, T. Complete generalized Gibbs ensembles in an interacting theory. Phys. Rev. Lett. 2015, 115, 157201. [Google Scholar] [CrossRef] [PubMed]
- Langen, T.; Erne, S.; Geiger, R.; Rauer, B.; Schweigler, T.; Kuhnert, M.; Rohringer, W.; Mazets, I.E.; Gasenzer, T.; Schmiedmayer, J. Experimental observation of a generalized Gibbs ensemble. Science 2015, 348, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [PubMed]
- Rezek, Y.; Salamon, P.; Hoffmann, K.H.; Kosloff, R. The quantum refrigerator: The quest for absolute zero. EPL 2009, 85, 30008. [Google Scholar] [CrossRef]
- Isar, A.; Sandulescu, A.; Scheid, W. Purity and decoherence in the theory of a damped harmonic oscillator. Phys. Rev. E 1999, 60, 6371–6381. [Google Scholar] [CrossRef]
- Serafini, A.; Illuminati, F.; De Siena, S. Symplectic invariants, entropic measures and correlations of Gaussian states. J. Phys. B At. Mol. Opt. Phys. 2003, 37, L21–L28. [Google Scholar] [CrossRef]
- Brown, E.G.; Friis, N.; Huber, M. Passivity and practical work extraction using Gaussian operations. New J. Phys. 2016, 18, 113028. [Google Scholar] [CrossRef]
- Insinga, A.; Andresen, B.; Salamon, P. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators. Phys. Rev. E 2016, 94, 012119. [Google Scholar] [CrossRef] [PubMed]
- Zagoskin, A.M.; Savel’ev, S.; Nori, F.; Kusmartsev, F. Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. B 2012, 86, 014501. [Google Scholar] [CrossRef]
- Brandner, K.; Bauer, M.; Seifert, U. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response. arXiv, 2017; arXiv:1703.02464. [Google Scholar]
- Deffner, S.; Abah, O.; Lutz, E. Quantum work statistics of linear and nonlinear parametric oscillators. Chem. Phys. 2010, 375, 200–208. [Google Scholar] [CrossRef]
- Beau, M.; Jaramillo, J.; Del Campo, A. Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity. Entropy 2016, 18, 168. [Google Scholar] [CrossRef]
- Feldmann, T.; Kosloff, R. Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 2003, 68, 016101. [Google Scholar]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; Del Campo, A.; Guéry-Odelin, D.; Muga, J.G. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [PubMed]
- Torrontegui, E.; Ibánez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.; Ruschhaupt, A.; Chen, X.; Muga, J.G. Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 2013, 62, 117–169. [Google Scholar]
- Chen, X.; Muga, J.G. Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Phys. Rev. A 2010, 82, 053403. [Google Scholar] [CrossRef]
- Muga, J.; Chen, X.; Ibáñez, S.; Lizuain, I.; Ruschhaupt, A. Transitionless quantum drivings for the harmonic oscillator. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 085509. [Google Scholar] [CrossRef]
- Cui, Y.Y.; Chen, X.; Muga, J.G. Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps. J. Phys. Chem. A 2016, 120, 2962–2969. [Google Scholar] [PubMed]
- Torrontegui, E.; Ibáñez, S.; Chen, X.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J. Fast atomic transport without vibrational heating. Phys. Rev. A 2011, 83, 013415. [Google Scholar] [CrossRef]
- Chen, X.; Torrontegui, E.; Muga, J. Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 2011, 83, 062116. [Google Scholar] [CrossRef]
- Hoffmann, K.; Salamon, P.; Rezek, Y.; Kosloff, R. Time-optimal controls for frictionless cooling in harmonic traps. EPL 2011, 96, 60015. [Google Scholar] [CrossRef]
- Salamon, P.; Hoffmann, K.H.; Rezek, Y.; Kosloff, R. Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 2009, 11, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Salamon, P.; Hoffmann, K.H.; Tsirlin, A. Optimal control in a quantum cooling problem. Appl. Math. Lett. 2012, 25, 1263–1266. [Google Scholar]
- Hoffmann, K.H.; Andresen, B.; Salamon, P. Optimal control of a collection of parametric oscillators. Phys. Rev. E 2013, 87, 062106. [Google Scholar] [CrossRef]
- Boldt, F.; Salamon, P.; Hoffmann, K.H. Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators. J. Phys. Chem. A 2016, 120, 3218–3224. [Google Scholar] [CrossRef] [PubMed]
- Bathaee, M.; Bahrampour, A.R. Optimal control of the power adiabatic stroke of an optomechanical heat engine. Phys. Rev. E 2016, 94, 022141. [Google Scholar] [PubMed]
- Campbell, S.; Deffner, S. Trade-off between speed and cost in shortcuts to adiabaticity. arXiv, 2016; arXiv:1609.04662. [Google Scholar]
- Stefanatos, D.; Ruths, J.; Li, J.S. Frictionless atom cooling in harmonic traps: A time-optimal approach. Phys. Rev. A 2010, 82, 063422. [Google Scholar]
- Stefanatos, D. Minimum-Time Transitions between Thermal and Fixed Average Energy States of the Quantum Parametric Oscillator. arXiv, 2016; arXiv:1608.02665. [Google Scholar]
- Torrontegui, E.; Kosloff, R. Quest for absolute zero in the presence of external noise. Phys. Rev. E 2013, 88, 032103. [Google Scholar] [CrossRef] [PubMed]
- Gorini, V.; Kossakowski, A. N-level system in contact with a singular reservoir. J. Math. Phys. 1976, 17, 1298–1305. [Google Scholar] [CrossRef]
- Blanes, S.; Casas, F.; Oteo, J.; Ros, J. The Magnus expansion and some of its applications. Phys. Rep. 2009, 470, 151–238. [Google Scholar] [CrossRef]
- Feldmann, T.; Kosloff, R. Quantum lubrication: Suppression of friction in a first-principles four-stroke heat engine. Phy. Rev. E 2006, 73, 025107. [Google Scholar] [CrossRef] [PubMed]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 2013; Volume 132. [Google Scholar]
- Heiss, W.; Harney, H. The chirality of exceptional points. Eur. Phys. J. D 2001, 17, 149–151. [Google Scholar] [CrossRef]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947–1018. [Google Scholar]
- Klaiman, S.; Günther, U.; Moiseyev, N. Visualization of branch points in pt-symmetric waveguides. Phys. Rev. Lett. 2008, 101, 080402. [Google Scholar] [CrossRef]
- Am-Shallem, M.; Kosloff, R.; Moiseyev, N. Exceptional points for parameter estimation in open quantum systems: Analysis of the Bloch equations. New J. Phys. 2015, 17, 113036. [Google Scholar]
- Uzdin, R.; Dalla Torre, E.G.; Kosloff, R.; Moiseyev, N. Effects of an exceptional point on the dynamics of a single particle in a time-dependent harmonic trap. Phys. Rev. A 2013, 88, 022505. [Google Scholar] [CrossRef]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Moiseyev, N. Sudden transition from a stable to an unstable harmonic trap as the adiabatic potential parameter is varied in a time-periodic harmonic trap. Phys. Rev. A 2013, 88, 034502. [Google Scholar] [CrossRef]
- Feldmann, T.; Kosloff, R. Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 2004, 70, 046110. [Google Scholar]
- Lindblad, G. Completely positive maps and entropy inequalities. Commun. Math. Phys. 1975, 40, 147–151. [Google Scholar] [CrossRef]
- Frigerio, A. Quantum dynamical semigroups and approach to equilibrium. Lett. Math. Phys. 1977, 2, 79–87. [Google Scholar] [CrossRef]
- Frigerio, A. Stationary states of quantum dynamical semigroups. Commun. Math. Phys. 1978, 63, 269–276. [Google Scholar]
- Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 1978, 19, 1227–1230. [Google Scholar] [CrossRef]
- Del Campo, A.; Goold, J.; Paternostro, M. More bang for your buck: Super-adiabatic quantum engines. Sci. Rep. 2014, 4, 6208. [Google Scholar] [CrossRef] [PubMed]
- Abah, O.; Lutz, E. Performance of superadiabatic quantum machines. arXiv, 2016; arXiv:1611.09045. [Google Scholar]
- Esposito, M.; Lindenberg, K.; Van den Broeck, C. Universality of efficiency at maximum power. Phys. Rev. Lett. 2009, 102, 130602. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, T.; Kosloff, R. Performance of discrete heat engines and heat pumps in finite time. Phys. Rev. E 2000, 61, 4774–4790. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Z.; Lai, Y.; Li, W.; He, J. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Phys. Rev. E 2015, 91, 062134. [Google Scholar] [CrossRef]
- Jaramillo, J.; Beau, M.; Del Campo, A. Quantum supremacy of many-particle thermal machines. New J. Phys. 2016, 18, 075019. [Google Scholar] [CrossRef]
- Chotorlishvili, L.; Azimi, M.; Stagraczyński, S.; Toklikishvili, Z.; Schüler, M.; Berakdar, J. Superadiabatic quantum heat engine with a multiferroic working medium. Phys. Rev. E 2016, 94, 032116. [Google Scholar]
- Zheng, Y.; Hänggi, P.; Poletti, D. Occurrence of discontinuities in the performance of finite-time quantum Otto cycles. arXiv, 2016; arXiv:1604.00489. [Google Scholar]
- Uzdin, R.; Kosloff, R. The multilevel four-stroke swap engine and its environment. New J. Phys. 2014, 16, 095003. [Google Scholar]
- Funo, K.; Zhang, J.N.; Chatou, C.; Kim, K.; Ueda, M.; Del Campo, A. Universal Work Fluctuations during Shortcuts To Adiabaticity by Counterdiabatic Driving. arXiv , 2016; arXiv:1609.08889. [Google Scholar]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.O.; Zubairy, M.S.; Agarwal, G.S.; Walther, H. Extracting work from a single heat bath via vanishing quantum coherence. Science 2003, 299, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 2014, 112, 030602. [Google Scholar] [CrossRef]
- Abah, O.; Lutz, E. Efficiency of heat engines coupled to nonequilibrium reservoirs. EPL 2014, 106, 20001. [Google Scholar] [CrossRef]
- Galve, F.; Lutz, E. Nonequilibrium thermodynamic analysis of squeezing. Phys. Rev. A 2009, 79, 055804. [Google Scholar] [CrossRef]
- Manzano, G.; Galve, F.; Zambrini, R.; Parrondo, J.M. Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 2016, 93, 052120. [Google Scholar] [CrossRef]
- Manzano, G.; Galve, F.; Zambrini, R.; Parrondo, J.M. Perfect heat to work conversion while refrigerating: Thermodynamic power of the squeezed thermal reservoir. arXiv, 2015; arXiv:1512.07881. [Google Scholar]
- Li, S.W.; Kim, M.B.; Scully, M.O. Non-Markovianity in a non-thermal bath. arXiv, 2016; arXiv:1604.03091. [Google Scholar]
- Niedenzu, W.; Gelbwaser-Klimovsky, D.; Kofman, A.G.; Kurizki, G. Efficiency bounds for quantum engines powered by non-thermal baths. arXiv, 2015; arXiv:1508.06519. [Google Scholar]
- Niedenzu, W.; Mukherjee, V.; Ghosh, A.; Kofman, A.G.; Kurizki, G. Universal thermodynamic limit of quantum engine efficiency. arXiv, 2017; arXiv:1703.02911. [Google Scholar]
- Zhang, X.; Huang, X.; Yi, X. Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 2014, 47, 455002. [Google Scholar] [CrossRef]
- Li, S.W. Mutual information description of entropy production. arXiv, 2016; arXiv:1612.03884. [Google Scholar]
- Hoffmann, K.; Salamon, P. Finite-time availability in a quantum system. EPL 2015, 109, 40004. [Google Scholar]
- Hoffmann, K.H.; Schmidt, K.; Salamon, P. Quantum finite time availability for parametric oscillators. J. Non-Equilib. Thermodyn. 2015, 40, 121–129. [Google Scholar] [CrossRef]
- Levy, A.; Alicki, R.; Kosloff, R. Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 2012, 85, 061126. [Google Scholar] [CrossRef]
- Nernst, W. Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachr. Kgl. Ges. Wiss. Gött. 1906, 1906, 1–40. (In German) [Google Scholar]
- Nernst, W. Über die Beziehung zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen. Ber. Kgl. Preuss. Akad. Wiss. 1906, 52, 933–940. (In German) [Google Scholar]
- Nernst, W. The Theoretical and Experimental Bases of the New Heat Theorem (Ger., Die Theoretischen und Experimentellen Grundlagen des neuen Wärmesatzes); W. Knapp: Halle, Germany, 1918. [Google Scholar]
- Landsberg, P.T. Foundations of Thermodynamics. Rev. Mod. Phys. 1956, 28, 363. [Google Scholar] [CrossRef]
- Landsberg, P.T. A comment on Nernst’s theorem. J. Phys. Math. Gen. 1989, 22, 139–141. [Google Scholar] [CrossRef]
- Wheeler, J.C. Nonequivalence of the Nernst–Simon and unattainability statements of the third law of thermodynamics. Phys. Rev. A 1991, 43, 5289–5295. [Google Scholar]
- Belgiorno, F. Notes on the third law of thermodynamics: I. J. Phys. A Math. Gen. 2003, 36, 8165–8193. [Google Scholar] [CrossRef]
- Kosloff, R.; Geva, E.; Gordon, J.M. Quantum refrigerators in quest of the absolute zero. J. Appl. Phys. 2000, 87, 8093–8097. [Google Scholar] [CrossRef]
- Blickle, V.; Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 2012, 8, 143–146. [Google Scholar] [CrossRef]
- Derényi, I.; Astumian, R.D. Efficiency of Brownian heat engines. Phys. Rev. E 1999, 59, R6219–R6222. [Google Scholar] [CrossRef]
- Hondou, T.; Sekimoto, K. Unattainability of Carnot efficiency in the Brownian heat engine. Phys. Rev. E 2000, 62, 6021–6025. [Google Scholar] [CrossRef]
- Schmiedl, T.; Seifert, U. Efficiency at maximum power: An analytically solvable model for stochastic heat engines. EPL 2007, 81, 20003. [Google Scholar] [CrossRef]
- Raz, O.; Subaşı, Y.; Pugatch, R. Geometric Heat Engines Featuring Power that Grows with Efficiency. Phys. Rev. Lett. 2016, 116, 160601. [Google Scholar] [CrossRef]
- Dechant, A.; Kiesel, N.; Lutz, E. Underdamped stochastic heat engine at maximum efficiency. arXiv, 2016; arXiv:1602.00392. [Google Scholar]
- Mandelstam, L.; Tamm, I. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 1945, 9, 249–254. [Google Scholar]
- Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Phys. D Nonlinear Phenom. 1998, 120, 188–195. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum limits to dynamical evolution. Phys. Rev. A 2003, 67, 052109. [Google Scholar] [CrossRef]
- Deffner, S.; Lutz, E. Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 2013, 111, 010402. [Google Scholar] [CrossRef]
- Levy, A.; Diósi, L.; Kosloff, R. Quantum flywheel. Phys. Rev. A 2016, 93, 052119. [Google Scholar] [CrossRef]
- Shiraishi, N.; Saito, K.; Tasaki, H. Universal Trade-Off Relation between Power and Efficiency for Heat Engines. Phys. Rev. Lett. 2016, 117, 190601. [Google Scholar] [CrossRef]
- Correa, L.A.; Palao, J.P.; Alonso, D. Internal dissipation and heat leaks in quantum thermodynamic cycles. Phys. Rev. E 2015, 92, 032136. [Google Scholar] [CrossRef]
- Terças, H.; Ribeiro, S.; Pezzutto, M.; Omar, Y. Quantum thermal machines driven by vacuum forces. Phys. Rev. E 2017, 95, 022135. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosloff, R.; Rezek, Y. The Quantum Harmonic Otto Cycle. Entropy 2017, 19, 136. https://doi.org/10.3390/e19040136
Kosloff R, Rezek Y. The Quantum Harmonic Otto Cycle. Entropy. 2017; 19(4):136. https://doi.org/10.3390/e19040136
Chicago/Turabian StyleKosloff, Ronnie, and Yair Rezek. 2017. "The Quantum Harmonic Otto Cycle" Entropy 19, no. 4: 136. https://doi.org/10.3390/e19040136
APA StyleKosloff, R., & Rezek, Y. (2017). The Quantum Harmonic Otto Cycle. Entropy, 19(4), 136. https://doi.org/10.3390/e19040136