Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft
Abstract
:1. Introduction
2. Working Principle for Solid Amine CDRA
3. Mechanism Models
3.1. Heat and Mass Transfer Models for Adsorption Process
3.2. Cabin CO2 Concentration
3.3. Power Consumption
3.4. Entropy Generation
- (1)
- The heat losses of two beds are disregarded, so the filter is considered as an isothermal system.
- (2)
- The effect of CO2 mass in both gas phase and adsorbent can be ignored.
- (3)
- The pressure is assumed to be constant.
- (4)
- The gas phase is assumed to obey the ideal gas behavior.
3.5. Numerical Calculation Method
4. Multi-Objective Optimization for the Solid Amine CDRA
4.1. Optimization Objectives and Variables
- (1)
- Cabin CO2 concentration should be controlled within the allowed range and kept at minimum, min (CCO2);
- (2)
- Minimize the fan power consumption, min (WFan);
- (3)
- Minimize the entropy generation in the adsorption bed, min (Sg,ads);
- (4)
- Maximize the difference of entropy generations in the adsorption and desorption beds, max (dSg), where dSg = Sg,des − Sg,ads.
4.2. Constraints for Optimization
- Constraints of optimal objectives
- (1)
- (2)
- The heat adsorption process is irreversible, so Sg,ads > 0 and dSg > 0.
- Constraints of optimization variables
- (1)
- The parameters, L and u, should satisfy the law of momentum conservation:
- (2)
- ms should be less than the maximum loading mass in the absorption bed:
- (3)
- τad should be less than the time when the adsorption reaches its saturation state:
- (4)
- The desorption condition is kept at a vacuum state over 1.5 h:
4.3. Calculation Methods of Optimization
5. Multi-Objective Optimal Results
5.1. Parameters for NSGA-II
5.2. Pareto Optimal Solution Set
- (1)
- In Figure 6, the maximum value of is 0.0137 kg/m3, about 0.69% volume concentration, which means that all the values of CCO2 satisfy the requirement. The optimal values can be derived from the POFs. The potential optimal combinations of design parameters include Designs 228, 461, 649, 759, 885, 930, 971, 1017, 1129, 1172, 1332, 1430, 1644, 1686, 1758, 1834, 1915, 1985 and 1993.
- (2)
- Figure 7 shows the optimal relationship between min (Sg,ads) and max (dSg). The potential optimal design points on the POFs include Designs 461, 649, 930, 971, 1008, 1017, 1332, 1430, 1481, 1635, 1644, 1686, 1829, 1834, 1915, 1974 and 1985.
- (3)
- In Figure 8, the preferred points contained Designs 228, 461, 540, 649, 885, 930, 971, 1008, 1017, 1260, 1332, 1430, 1556, 1644, 1686, 1751, 1829, 1915, 1985 and 1993.
5.3. Optimal Solution for CDRA
6. Conclusions
- Small loading mass of ms is beneficial to reduce the system weight and total pressure difference, but it is a disadvantage to ;
- τad has approximate linear relationship with dSg, but it is inversely proportional to Sg,ads and dSg;
- The increase of L contributes to increase the heat transfer surface and improves the adsorption capacity, but it will lead to the entropy generation in the desorption bed;
- The low velocity leads to reducing the power consumption, but it is not conducive to the convective heat transfer between the gas and solid phase.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mulloth, L.M.; Finn, J.E. Air quality systems for related enclosed spaces: Spacecraft air. In Air Quality in Airplane Cabins and Similar Enclosed Spaces; Hocking, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 383–404. [Google Scholar]
- Williams, D.E.; Pate, L.R.; Hoffman, C. The lithium hydroxide management plan for removing carbon dioxide from the space shuttle while docked to the international space station. SAE Int. 2003. [Google Scholar] [CrossRef]
- Gomes, V.G.; Yee, K.W.K. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Sep. Purif. Technol. 2002, 28, 161–171. [Google Scholar] [CrossRef]
- Matty, C. Overview of carbon dioxide control issues during international space station/space shuttle joint docked operations. In Proceedings of the 40th International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics, Barcelona, Spain, 11–15 July 2010. [Google Scholar]
- Knox, J.; Gostowski, R.; Watson, D.; Hogan, J.; King, E.; Thomas, J. Development of carbon dioxide removal systems for advanced exploration systems. In Proceedings of the 42nd International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics, San Diego, CA, USA, 15–19 July 2012. [Google Scholar]
- Papale, W.; Nalette, T.; Sweterlitsch, J. Development status of the carbon dioxide and moisture removal amine swing-bed system (camras). SAE Tech. Pap. 2009. [Google Scholar] [CrossRef]
- Ebner, A.D.; Ritter, J.A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 2009, 44, 1273–1421. [Google Scholar] [CrossRef]
- Isobe, J.; Henson, P.; MacKnight, A.; Yates, S.; Schuck, D.; Winton, D. Carbon Dioxide Removal Technologies for U.S. Space Vehicles: Past, Present, and Future. In Proceedings of the 46th International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics, Vienna, Germany, 10–14 July 2016. [Google Scholar]
- Wieland, P.O. Living Together in Space: The Design and Operation of the Life Support Systems on the International Space Station; National Aeronautics and Space Administration, Marshall Space Flight Center: Huntsville, AL, USA, 1998.
- Boynton, C.K.; Colling, A.K. Solid amine CO2 removal system for submarine application. SAE Tech. Pap. 1983. [Google Scholar] [CrossRef]
- Preiss, H.; Breitling, W.; Funke, H. Regenerative CO2-control: A technology development for european manned space programs. SAE Tech. Pap. 1988. [Google Scholar] [CrossRef]
- Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 2001, 15, 250–255. [Google Scholar] [CrossRef]
- Nitta, K. An overview of japanese celss research activities. Adv. Space Res. 1987, 7, 95–103. [Google Scholar] [CrossRef]
- Boehm, A.M.; Ouellette, F.A. Chamber testing of CO2 removal systems using solid amines. SAE Tech. Pap. 1995. [Google Scholar] [CrossRef]
- Sherif, D.E.; Knox, J.C. International space station carbon dioxide removal assembly (iss cdra) concepts and advancements. SAE Tech. Pap. 2005. [Google Scholar] [CrossRef]
- Nalette, T.A.; Blaser, R.W.; Coleman, W.D.; Cusick, R.J. Development of an advanced solid amine humidity and CO2 control system for potential space station extravehicular activity application. SAE Tech. Pap. 1988. [Google Scholar] [CrossRef]
- Wood, P.C.; Wydeven, T. Stability of ira-45 solid amine resin as a function of carbon dioxide absorption and steam desorption cycling. SAE Tech. Pap. 1987. [Google Scholar] [CrossRef]
- Bollini, P.; Brunelli, N.A.; Didas, S.A.; Jones, C.W. Dynamics of CO2 adsorption on amine adsorbents. 2. Insights into adsorbent design. Ind. Eng. Chem. Res. 2012, 51, 15153–15162. [Google Scholar] [CrossRef]
- Andreoli, E.; Cullum, L.; Barron, A.R. Carbon dioxide absorption by polyethylenimine-functionalized nanocarbons: A kinetic study. Ind. Eng. Chem. Res. 2015, 54, 878–889. [Google Scholar] [CrossRef]
- Monazam, E.R.; Shadle, L.J.; Siriwardane, R. Performance and kinetics of a solid amine sorbent for carbon dioxide removal. Ind. Eng. Chem. Res. 2011, 50, 10989–10995. [Google Scholar] [CrossRef]
- Rezaei, F.; Webley, P. Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 2009, 64, 5182–5191. [Google Scholar] [CrossRef]
- Monazam, E.R.; Shadle, L.J.; Miller, D.C.; Pennline, H.W.; Fauth, D.J.; Hoffman, J.S.; Gray, M.L. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica. AIChE J. 2013, 59, 923–935. [Google Scholar] [CrossRef]
- Wurzbacher, J.A.; Gebald, C.; Piatkowski, N.; Steinfeld, A. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle. Environ. Sci. Technol. 2012, 46, 9191–9198. [Google Scholar] [CrossRef] [PubMed]
- Pirngruber, G.D.; Leinekugel-le-Cocq, D. Design of a pressure swing adsorption process for postcombustion CO2 capture. Ind. Eng. Chem. Res. 2013, 52, 5985–5996. [Google Scholar] [CrossRef]
- Puxty, G.; Rowland, R. Modeling CO2 mass transfer in amine mixtures: Pz-amp and pz-mdea. Environ. Sci. Technol. 2011, 45, 2398–2405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Nwani, O.; Tan, Y.; Agar, D.W. Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction. Chem. Eng. Res. Des. 2011, 89, 1190–1196. [Google Scholar] [CrossRef]
- Kim, M.; Song, H.J.; Lee, M.G.; Jo, H.Y.; Park, J.W. Kinetics and steric hindrance effects of carbon dioxide absorption into aqueous potassium alaninate solutions. Ind. Eng. Chem. Res. 2012, 51, 2570–2577. [Google Scholar] [CrossRef]
- Lee, S.; Filburn, T.P.; Gray, M.; Park, J.W.; Song, H.J. Screening test of solid amine sorbents for CO2 capture. Ind. Eng. Chem. Res. 2008, 47, 7419–7423. [Google Scholar] [CrossRef]
- Chua, H.T.; Ng, K.C.; Malek, A.; Kashiwagi, T.; Akisawa, A.; Saha, B.B. Entropy generation analysis of two-bed, silica gel-water, non-regenerative adsorption chillers. J. Phys. D 1998, 31, 1471. [Google Scholar] [CrossRef]
- Li, A.; Ismail, A.B.; Thu, K.; Ng, K.C.; Loh, W.S. Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight. Appl. Energy 2014, 130, 702–711. [Google Scholar] [CrossRef]
- James, J.T. Carbon Dioxide. In Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants; The National Academies Press: Washington, DC, USA, 2008; Volume 5, pp. 112–124. [Google Scholar]
- Lian, Y.S.; Oyama, A.; Liou, M.S. Progress in design optimization using evolutionary algorithms for aerodynamic problems. Prog. Aerosp. Sci. 2010, 46, 199–223. [Google Scholar] [CrossRef]
- Jeyadevi, S.; Baskar, S.; Babulal, C.K.; Iruthayarajan, M.W. Solving multiobjective optimal reactive power dispatch using modified nsga-ii. Int. J. Elecr. Power 2011, 33, 219–228. [Google Scholar] [CrossRef]
- Kannan, S.; Baskar, S.; McCalley, J.D.; Murugan, P. Application of nsga-ii algorithm to generation expansion planning. IEEE Trans. Power Syst. 2009, 24, 454–461. [Google Scholar] [CrossRef]
Parameter | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
as | m2·m−3 | 520 | W·m−1·K−1 | 0.42 | |
kg·m−3 | 5.45 × 10−4 | W·m−1·K−1 | 0.40 | ||
J·kg−1·K−1 | 1.00 × 103 | n | person | 3 | |
J·kg−1·K−1 | 1000 | Pa | 800 | ||
J·kg−1·K−1 | 900 | m3 | 118 | ||
m2·s−1 | 1 × 109 | ε | ---- | 0.35 | |
H | m | 0.2 | T0 | K | 300 |
hf | W·m−2·K−1 | 4.9 | Tg0 | K | 300 |
hw | W·m−2·K−1 | 0.91 | Ts0 | K | 300 |
ΔH | J·mol−1 | 5.75 × 104 | W | m | 0.4 |
K | m3·kg−1 | 5.65 | kg·m−3 | 1.2 | |
k | h−1 | 3.9 × 10−2 | kg·m−3 | 550 | |
W·m−1·K−1 | 0.055 | kg·m−3 | 6500 | ||
W·m−1·K−1 | 0.32 | Pa·s | 17.9 × 10−6 | ||
W·m−1·K−1 | 1.39 | kg·h−1 | 4.15 × 10−2 |
Parameters | Value |
---|---|
Number of Designs | 20 |
Number of Generations | 100 |
Cross-Over Probability | 0.5 |
Mutation Probability for Real-Coded Vectors | 1.0 |
Mutation Probability for Binary Vectors | 1.0 |
Distribution Index for Real-Coded Crossover | 20 |
Distribution Index for Real-Coded Mutation | 20 |
Random Generator Seed | 1 |
Design Point | u m/s | L m | τad h | ms kg | CCO2 kg/m3 | Sg,ads J/(s·K) | WFan J/s | dSg J/(s·K) |
---|---|---|---|---|---|---|---|---|
461 | 0.10 | 0.74 | 3.64 | 11.67 | 0.00293 | 0.16 | 36.0 | 1.80 |
649 | 0.10 | 0.66 | 3.89 | 10.44 | 0.00458 | 0.13 | 36.0 | 1.70 |
930 | 0.10 | 0.63 | 3.94 | 10.53 | 0.00565 | 0.13 | 36.0 | 1.69 |
971 | 0.10 | 0.59 | 3.94 | 10.53 | 0.00703 | 0.12 | 36.0 | 1.69 |
1017 | 0.10 | 0.61 | 2.82 | 11.67 | 0.00234 | 0.17 | 36.0 | 2.31 |
1332 | 0.10 | 0.72 | 3.85 | 10.54 | 0.00350 | 0.14 | 36.0 | 1.71 |
1430 | 0.10 | 0.59 | 2.71 | 11.75 | 0.00226 | 0.18 | 36.0 | 2.40 |
1644 | 0.10 | 0.49 | 3.84 | 10.85 | 0.00976 | 0.11 | 36.0 | 1.75 |
1686 | 0.10 | 0.58 | 2.41 | 11.76 | 0.00200 | 0.20 | 36.0 | 2.67 |
1915 | 0.10 | 0.51 | 2.18 | 11.98 | 0.00186 | 0.20 | 36.0 | 2.93 |
1985 | 0.10 | 0.73 | 2.00 | 11.98 | 0.00169 | 0.27 | 36.0 | 3.11 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A, R.; Pang, L.; Liu, M.; Yang, D. Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft. Entropy 2017, 19, 348. https://doi.org/10.3390/e19070348
A R, Pang L, Liu M, Yang D. Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft. Entropy. 2017; 19(7):348. https://doi.org/10.3390/e19070348
Chicago/Turabian StyleA, Rong, Liping Pang, Meng Liu, and Dongsheng Yang. 2017. "Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft" Entropy 19, no. 7: 348. https://doi.org/10.3390/e19070348
APA StyleA, R., Pang, L., Liu, M., & Yang, D. (2017). Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft. Entropy, 19(7), 348. https://doi.org/10.3390/e19070348