Solutions to the Cosmic Initial Entropy Problem without Equilibrium Initial Conditions
Abstract
:1. The Entropy of the Universe, the Second Law, the Past Hypothesis, and the Cosmic Initial Entropy Problem
2. Gravitational Entropy and Penrose’s Weyl Curvature Hypothesis
2.1. Kinetically vs. Gravitationally-Dominated Systems
2.2. Penrose’s Weyl Curvature Hypothesis
The Weyl curvature vanishes … at the initial singularity and is unconstrained, no doubt diverging wildly to infinity, at final singularities.—Penrose [6] (p. 767)
3. Inflation Produces Low Entropy Initial Conditions
4. Boltzmann’s Anthropic Hypothesis: Low Entropy Fluctuation in a Maximum Entropy Background
4.1. Problems with Boltzmann’s Hypothesis
…from the hypothesis that the world is a fluctuation, all of the predictions are that if we look at a part of the world we have never seen before, we will find it mixed up, and not like the piece we looked at. If our order was due to a fluctuation, we would not expect order anywhere but where we have just noticed it.—Feynman [40] (lecture 46)
The fact that we inhabit at least a Hubble volume of low entropy must be counted as strong evidence against Boltzmann’s hypothesis.—Davies [41] (p. 9)
4.2. Boltzmann Brains: How Small Can the Low Entropy Region Be and Still Produce Observers?
5. Which Initial Condition Is More ‘Natural’, Inflation or Equilibrium?
The goal I am pursuing is to find cosmological scenarios in which the Past Hypothesis is predicted by the dynamics, not merely assumed.—Carroll [13]
What Is Wrong with Equilibrium as an Initial Condition?
6. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lineweaver, C.H.; Egan, C. Life, Gravity and the Second Law of Thermodynamics. Phys. Life Rev. 2008, 5, 225–242. [Google Scholar] [CrossRef]
- Zemansky, M.W.; Dittman, R.H. Heat and Thermodynamics, 1st ed.; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Frautschi, S. Entropy in an expanding universe. Science 1982, 217, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Lineweaver, C.H. The Entropy of the Universe and the Maximum Entropy Production Principle. In Beyond the Second Law, 1st ed.; Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 415–427. [Google Scholar]
- Albrecht, A. Cosmic inflation and the arrow of time. In Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity, 1st ed.; Cambridge University Press: Cambridge, UK, 2002; pp. 363–401. [Google Scholar]
- Penrose, R. The big bang and its thermodynamic legacy. In Road to Reality: A Complete Guide to the Laws of the Universe, 1st ed.; Jonathan Cape: London, UK, 2004; pp. 686–734. [Google Scholar]
- Egan, C.A.; Lineweaver, C.H. A larger estimate of the entropy of the universe. Astrophys. J. 2010, 710, 1825–1834. [Google Scholar] [CrossRef]
- Layzer, D. The arrow of time. Sci. Am. 1975, 233, 56–69. [Google Scholar] [CrossRef]
- Price, H. Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Albert, D.Z. The reversibility objects and the past-hypothesis. In Time and Chance, 1st ed.; Harvard University Press: Cambridge, MA, USA, 2000; p. 96. [Google Scholar]
- Earman, J. The ‘past hypothesis’: Not even false. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2006, 37, 399–430. [Google Scholar] [CrossRef]
- Wallace, D. The Logic of the Past Hypothesis. Available online: http://philsci-archive.pitt.edu/8894/ (accessed on 8 August 2017).
- Carroll, S.M. Cosmology and the Past Hypothesis. Available online: http://www.preposterousuniverse.com/blog/2013/07/09/cosmology-and-the-past-hypothesis/ (accessed on 30 June 2017).
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Lineweaver, C.H. A Simple Treatment of Complexity: Cosmological Entropic Boundary Conditions on Increasing Complexity; Lineweaver, C.H., Davies, P.C.W., Ruse, M., Eds.; Chapter 3 of Complexity and the Arrow of Time; Cambridge University Press: Cambridge, UK, 2013; pp. 42–67. [Google Scholar]
- Carroll, S.M.; Chen, J. Spontaneous inflation and the origin of the arrow of time. arXiv 2004, arXiv:hep-th/0410270. [Google Scholar]
- Smoot, G.F.; Bennett, C.L.; Kogut, A.; Wright, E.L.; Aymon, J.; Boggess, N.W.; Cheng, E.S.; de Amici, G.; Gulkis, S.; Hauser, M.G.; et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 1992, 396, L1–L5. [Google Scholar] [CrossRef]
- Fixsen, D.J.; Cheng, E.S.; Cottingham, D.A.; Eplee, R.E., Jr.; Isaacman, R.B.; Mather, J.C.; Meyer, S.S.; Noerdlinger, P.D.; Shafer, R.A.; Weiss, R.; et al. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument. Astrophys. J. 1994, 420, 445–449. [Google Scholar] [CrossRef]
- Kolb, E.W.; Turner, M.S. The Early Universe; Avalon Publishing: New York, NY, USA, 1994. [Google Scholar]
- Hawking, S.W.; Page, D.N. Thermodynamics of black holes in anti-De Sitter space. Commun. Math. Phys. 1983, 87, 577–588. [Google Scholar] [CrossRef]
- Zurek, W.H. Entropy evaporated by a black hole. Phys. Rev. Lett. 1982, 49, 1683. [Google Scholar] [CrossRef]
- Page, D.N. Comment on “Entropy Evaporated by a Black Hole”. Phys. Rev. Lett. 1983, 50, 1013. [Google Scholar] [CrossRef]
- Page, D.N. Hawking radiation and black hole thermodynamics. New J. Phys. 2005, 7, 203. [Google Scholar] [CrossRef]
- Penrose, R. Singularities and time asymmetry. In General Relativity: An Einstein Centenary Volume; Hawking, S.W., Israel, W., Eds.; University Press: Cambridge, UK, 1979; pp. 581–638. [Google Scholar]
- Binney, J.; Tremaine, S. Galactic Dynamics, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Wallace, D. Gravity, entropy, and cosmology: In search of clarity. Br. J. Philos. Sci. 2010, 61, 513–540. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Davies, P.C.W. Inflation and time asymmetry of the universe. Nature 1983, 301, 398–400. [Google Scholar] [CrossRef]
- Albrecht, A. de Sitter equilibrium as a fundamental framework for cosmology. J. Phys. Conf. Ser. 2009, 174, 012006. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.; Starbinksy, A.A. Reheating after inflation. Phys. Rev. Lett. 1994, 73, 3195–3199. [Google Scholar] [CrossRef] [PubMed]
- Shtanov, Y.; Traschen, J.; Bradenberger, R. Universe reheating after inflation. Phys. Rev. D 1995, 51, 5438–5455. [Google Scholar] [CrossRef]
- Boltzmann, L. On Certain Questions of the Theory of Gases. Nature 1895, 1322, 413–415. [Google Scholar] [CrossRef]
- Boltzmann, L. Über die mechanische Erklärung irreversibler Vorgänge (Zu Hrn. Zermelo’s Abhandlung). Annalen der Physik 1897, 296, 392–398. (In German) [Google Scholar] [CrossRef]
- Poincaré, H. Sur le problème des trois corps et les équations de la dynamique. Acta Math. 1890, 13, 1–270. (In French) [Google Scholar]
- Evans, D.J.; Searles, D.J. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 1994, 50, 1645–1648. [Google Scholar] [CrossRef]
- Carter, B. Large Number Coincidences and the Anthropic Principle in Cosmology. In Proceedings of the Confrontation of Cosmological Theories with Observational Data, Krakow, Poland, 10–12 September 1973; pp. 291–298. [Google Scholar]
- Barrow, J.D.; Tipler, F.J. The Anthropic Cosmological Principle, 1st ed.; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics, Desktop Edition Volume 1; Basic Books: New York, NY, USA, 2013; pp. 46–47. [Google Scholar]
- Davies, P.C.W. Multiverse cosmological models. Mod. Phys. Lett. A 2004, 19, 727–743. [Google Scholar] [CrossRef]
- Sachs, R.K.; Wolfe, A.M. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophys. J. 1967, 147, 73. [Google Scholar] [CrossRef]
- Eisenstein, D.J. Dark energy and cosmic sound. New Astron. Rev. 2005, 49, 360–365. [Google Scholar] [CrossRef]
- Albrecht, A.; Sorbo, L. Can the universe afford inflation? Phys. Rev. D 2004, 70, 065328. [Google Scholar] [CrossRef]
- Page, D.N. Can inflation explain the second law of thermodynamics? Int. J. Theor. Phys. 1984, 23, 725–733. [Google Scholar] [CrossRef]
- Linde, A. Inflationary cosmology after Planck 2013. arXiv, 2014; arXiv:1402.0526. [Google Scholar]
- Guth, A.H.; Kaiser, D.I.; Nomura, Y. Inflationary paradigm after Planck 2013. Phys. Lett. B 2014, 733, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Ijjas, A.; Steinhardt, P.J.; Loeb, A. Cosmic inflation theory faces challenges. Sci. Am. 2017, 316, 2. [Google Scholar]
- Guth, A.H.; David, I.; Kaiser, D.I.; Linde, A.D.; Nomura, Y.; Bennett, C.L.; Bond, J.R.; Bouchet, F.; Carroll, S.; Efstathiou, G.; et al. A Cosmic Controversy. Available online: https://blogs.scientificamerican.com/observations/a-cosmic-controversy/ (accessed on 30 June 2017).
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, V.M.; Lineweaver, C.H. Solutions to the Cosmic Initial Entropy Problem without Equilibrium Initial Conditions. Entropy 2017, 19, 411. https://doi.org/10.3390/e19080411
Patel VM, Lineweaver CH. Solutions to the Cosmic Initial Entropy Problem without Equilibrium Initial Conditions. Entropy. 2017; 19(8):411. https://doi.org/10.3390/e19080411
Chicago/Turabian StylePatel, Vihan M., and Charles H. Lineweaver. 2017. "Solutions to the Cosmic Initial Entropy Problem without Equilibrium Initial Conditions" Entropy 19, no. 8: 411. https://doi.org/10.3390/e19080411
APA StylePatel, V. M., & Lineweaver, C. H. (2017). Solutions to the Cosmic Initial Entropy Problem without Equilibrium Initial Conditions. Entropy, 19(8), 411. https://doi.org/10.3390/e19080411