Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence
Abstract
:1. Introduction
1.1. General Motivation
1.2. Statistical and Information Entropy
1.3. Information Redundancy
1.4. Information Synergy
2. Polyadic “Non-Extensive” Entropies
2.1. The Fundamentals
2.2. Dyadic Systems
2.3. Triadic Systems
3. Polyadic Synergy and Redundancy
3.1. Synergy and Redundancy Emerging among Statistically Independent Variables
3.2. Dyadic Form
3.3. Triadic Form
4. Concluding Remarks
- Factorable probabilities do not necessarily lead to additive entropies.
- Microscale codependence does not necessarily lead to macroscale codependence.
- Macroscale independendence does not necessarily imply microscale independence.
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. The mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley and Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Schneidman, E.; Still, S.; Berry, M.J.; Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 2003, 91, 238701. [Google Scholar] [CrossRef] [PubMed]
- McGill, W.J. Multivariate information transmission. Psychometrika 1954, 19, 97–116. [Google Scholar] [CrossRef]
- Pires, C.A.L.; Perdigão, R.A.P. Non-Gaussian interaction information: Estimation, optimization and diagnostic application of triadic wave resonance. Nonlinear Process. Geophys. 2015, 22, 87–108. [Google Scholar] [CrossRef]
- Lage, E.J.S. Física Estatística; Fundação Calouste Gulbenkian: Lisbon, Portugal, 1995. (In Portuguese) [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [Google Scholar] [CrossRef] [PubMed]
- Pires, C.A.L.; Perdigão, R.A.P. Minimum Mutual Information and Non-Gaussianity Through the Maximum Entropy Method: Estimation from finite samples. Entropy 2012, 14, 1103–1126. [Google Scholar] [CrossRef]
- Pires, C.A.L.; Perdigão, R.A.P. Minimum Mutual Information and Non-Gaussianity Through the Maximum Entropy Method: Theory and Properties. Entropy 2013, 15, 721–752. [Google Scholar] [CrossRef]
- Jakulin, A.; Bratko, I. Quantifying and Visualizing Attribute Interactions. arXiv. 2004. arXiv:cs/0308002. Available online: https://arxiv.org/abs/cs/0308002v3 (accessed on 3 January 2018).
- Borges, E.P.; Roditi, I. A family of non-extensive entropies. Phys. Lett. A 1998, 246, 399–402. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Nobre, F.D. Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation. Phys. Rev. E 2003, 67, 021107. [Google Scholar] [CrossRef] [PubMed]
- Schwämmle, V.; Curado, E.M.F.; Nobre, F.D. A general nonlinear Fokker-Planck equation and its associated entropy. Eur. Phys. J. B 2007, 58, 159–165. [Google Scholar] [CrossRef]
- Perdigão, R.A.P.; Blöschl, G. Spatiotemporal flood sensitivity to annual precipitation: Evidence for landscape-climate coevolution. Water Resour. Res. 2014, 50, 5492–5509. [Google Scholar] [CrossRef]
- Perdigão, R.A.P.; Pires, C.A.L.; Hall, J. Synergistic Dynamic Theory of Complex Coevolutionary Systems: Disentangling Nonlinear Spatiotemporal Controls on Precipitation. arXiv. 2016. arXiv:1611.03403. Available online: https://arxiv.org/abs/1611.03403 (accessed on 3 January 2018).
- Tsallis, C. Nonextensive physics: A possible connection between generalized statistical mechanics and quantum groups. Phys. Lett. A 1994, 195, 329–334. [Google Scholar] [CrossRef]
- Perdigão, R.A.P. Mathematical Physics and Predictability of Non-Periodic Emergence and Extremes in Complex Coevolutionary Systems; APMG: Lisbon, Portugal, 2017; ISBN 9789899566002. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdigão, R.A.P. Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence. Entropy 2018, 20, 26. https://doi.org/10.3390/e20010026
Perdigão RAP. Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence. Entropy. 2018; 20(1):26. https://doi.org/10.3390/e20010026
Chicago/Turabian StylePerdigão, Rui A. P. 2018. "Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence" Entropy 20, no. 1: 26. https://doi.org/10.3390/e20010026