On the Principle of Synchronization
Abstract
:1. Introduction
2. Thermal Clocks
3. Principle of Synchronization
3.1. Tolman–Ehrenfest and Davies–Unruh Effect
3.2. Bekenstein-Type of Bounds on Entropy
3.3. De-Sitter Vacuum
3.4. Einstein Equations
4. Conclusions
Funding
Conflicts of Interest
References
- Peres, A. Measurement of time by quantum clocks. Am. J. Phys. 1980, 48, 552–557. [Google Scholar] [CrossRef]
- Schlatter, A. Duration and its relationship to the geometry of Space-Time I. Int. J. Quantum Found. 2017, 3, 65–77. [Google Scholar]
- Schlatter, A. Duration and its relationship to the geometry of Space-Time II. Int. J. Quantum Found. 2017, 3, 119–125. [Google Scholar]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Davies, P.C.W. Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Math. Gen. 1975, 8, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C.; Ehrenfest, P. Temperature Equilibrium in a Static Gravitational Field. Phys. Rev. 1930, 36, 1791. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287. [Google Scholar] [CrossRef]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Über das Relativitätsprinzip und die aus ihm gezogenen Folgerungen. Jahrb. Radioakt. 1908, 4, 411–462. (In German) [Google Scholar]
- Connes, A.; Rovelli, C. Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation in General Covariant Quantum Theories. Class. Quantum Gravity 1994, 11, 2899–2918. [Google Scholar] [CrossRef]
- Haggard, H.; Rovelli, C. Death and resurrection of the zeroth principle of thermodynamics. Phys. Rev. D 2013, 87, 084001. [Google Scholar] [CrossRef] [Green Version]
- Lubkin, E. Keeping the Entropy of Measurement: Szilard revisited. Int. J. Theor. Phys. 1987, 26, 523–534. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Phys. D 1998, 120, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. “Incerto Tempore, Incertisque Loci”: Can We Compute the Exact Time at Which a Quantum Measurement Happens? Found. Phys. 1998, 28, 1031–1043. [Google Scholar] [CrossRef]
- Von Mosengeil, K. Theorie der stationären Strahlung in einem bewegten Hohlraum. Ann. Phys. 1907, 327, 867–906. (In German) [Google Scholar] [CrossRef]
- Rindler, W. Hyperbolic Motion in Curved Space Time. Phys. Rev. 1960, 119, 2082–2089. [Google Scholar] [CrossRef]
- Braeck, S.; Gron, O. A river model of space. Eur. Phys. J. Plus 2013, 128, 24. [Google Scholar] [CrossRef]
- Verlinde, E.J. Emergent Gravity and the Dark Universe. SciPost Phys. 2017, 2, 16. [Google Scholar] [CrossRef]
- Milgrom, M. MOND-theory. Can. J. Phys. 2015, 93, 107–118. [Google Scholar] [CrossRef]
- Schlatter, A. Synchronization of Thermal Clocks and Entropic Corrections of Gravity. Int. J. Quantum Found. 2018, 4, 119–129. [Google Scholar]
- Verlinde, E.J. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 2011, 29. [Google Scholar] [CrossRef]
- Wald, R.M. Asymptotic Flatness. In General Relativity; The University of Chicago Press: Chicago, IL, USA; London, UK, 1984; 289p, ISBN 0-226-87033-2. [Google Scholar]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghi, C. Physical Time and thermal Clocks. Found. Phys. 2016, 46, 1374–1379. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlatter, A. On the Principle of Synchronization. Entropy 2018, 20, 741. https://doi.org/10.3390/e20100741
Schlatter A. On the Principle of Synchronization. Entropy. 2018; 20(10):741. https://doi.org/10.3390/e20100741
Chicago/Turabian StyleSchlatter, Andreas. 2018. "On the Principle of Synchronization" Entropy 20, no. 10: 741. https://doi.org/10.3390/e20100741
APA StyleSchlatter, A. (2018). On the Principle of Synchronization. Entropy, 20(10), 741. https://doi.org/10.3390/e20100741