The Volume of Two-Qubit States by Information Geometry
Abstract
:1. Introduction
2. Structure of a Set of Two-Qubit States
- (i)
- For any ρ, the matrix T belongs to the tetrahedron with vertices , , , .
- (ii)
- For any separable state ρ, the matrix T belongs to the octahedron with vertices , , .
- (i)
- Any operator (1) with and diagonal T is a state (density operator) iff T belongs to the tetrahedron .
- (ii)
- Any state ρ with maximally disordered subsystems and diagonal T is separable iff T belongs to the octahedron .
3. Fisher Metrics
3.1. Classical Fisher Metric in Phase Space
3.2. Quantum Fisher Metrics
4. Volume of States with Maximally Disordered Subsystems
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Dahlsten, O.C.O.; Lupo, C.; Mancini, S.; Serafini, A. Entanglement typicality. J. Phys. A Math. Theor. 2014, 47, 363001. [Google Scholar] [CrossRef]
- Facchi, P.; Kulkarni, R.; Man’ko, V.I.; Marmo, G.; Sudarshan, E.C.G.; Ventriglia, F. Classical and Quantum Fisher Information in the Geometrical Formulation of Quantum Mechanics. Phys. Lett. A 2010, 374, 4801–4803. [Google Scholar] [CrossRef]
- Petz, D. Monotone metrics on matrix spaces. Linear Algebra Appl. 1996, 244, 81–96. [Google Scholar] [CrossRef]
- Bengtsson, I.; Życzkowski, K. Geometry of Quantum States; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Życzkowski, K.; Horodecki, P.; Sanpera, A.; Lewenstein, M. Volume of the set of separable states. Phys. Rev. A 1998, 58, 883. [Google Scholar] [CrossRef]
- Ye, D. On the Bures volume of separable quantum states. J. Math. Phys. 2009, 50, 083502. [Google Scholar] [CrossRef]
- Szarek, S.J. Volume of separable states is super-doubly-exponentially small in the number of qubits. Phys. Rev. A 2005, 72, 032304. [Google Scholar] [CrossRef]
- Aubrun, G.; Szarek, S.J. Tensor products of convex sets and the volume of separable states on N qudits. Phys. Rev. A 2006, 73, 022109. [Google Scholar] [CrossRef]
- Link, V.; Strunz, W.T. Geometry of Gaussian quantum states. J. Phys. A Math. Theor. 2015, 48, 275301. [Google Scholar] [CrossRef]
- Felice, D.; Hà Quang, M.; Mancini, S. The volume of Gaussian states by information geometry. J. Math. Phys. 2017, 58, 012201. [Google Scholar] [CrossRef]
- Amari, S.; Nagaoka, H. Methods of Information Geometry; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar]
- Helstrom, C.W. Quantum detection and estimation theory. J. Stat. Phys. 1969, 1, 231–252. [Google Scholar] [CrossRef]
- Luo, S.-L. Fisher information of wavefunctions: Classical and quantum. Chin. Phys. Lett. 2006, 23, 3127. [Google Scholar]
- Horodecki, R.; Horodecki, M. Information-theoretic aspects of quantum inseparability of mixed states. Phys. Rev. A 1996, 54, 1838. [Google Scholar] [CrossRef] [PubMed]
- Klauder, J.R.; Skagerstam, B.S. Coherent states; World Scientific: Singapore, 1985. [Google Scholar]
- Chentsov, N.N. Statistical decision rules and optimal inferences; American Mathematical Society: Providence, RI, USA, 1982. [Google Scholar]
- Wigner, E.P.; Yanase, M.M. Information contents of distributions. Proc. Nat. Acad. Sci. USA 1963, 49, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, P.; Zalka, C.; Faoro, L. Entangling power of quantum evolutions. Phys. Rev. A 2000, 62, 030301(R). [Google Scholar] [CrossRef]
- Nourmandipour, A.; Tavassoly, M.K.; Mancini, S. The entangling power of a “glocal” dissipative map. Quantum Inf. Comput. 2016, 16, 969–981. [Google Scholar]
- Altafini, C. Tensor of coherences parameterization of multiqubit density operators for entanglement characterization. Phys. Rev. A 2004, 69, 012311. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rexiti, M.; Felice, D.; Mancini, S. The Volume of Two-Qubit States by Information Geometry. Entropy 2018, 20, 146. https://doi.org/10.3390/e20020146
Rexiti M, Felice D, Mancini S. The Volume of Two-Qubit States by Information Geometry. Entropy. 2018; 20(2):146. https://doi.org/10.3390/e20020146
Chicago/Turabian StyleRexiti, Milajiguli, Domenico Felice, and Stefano Mancini. 2018. "The Volume of Two-Qubit States by Information Geometry" Entropy 20, no. 2: 146. https://doi.org/10.3390/e20020146
APA StyleRexiti, M., Felice, D., & Mancini, S. (2018). The Volume of Two-Qubit States by Information Geometry. Entropy, 20(2), 146. https://doi.org/10.3390/e20020146