Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision
Abstract
:1. Introduction
2. Standard Fuzzy Entropy and the New Entropy Measure
2.1. Fuzzy Entropy Algorithm
- Split into a series of subsequences of length m starting at : .
- For each vector , compute the similarity degree of its neighboring vector using a similarity function as:
- For each i (), compute as:
- Construct and as:
- Fuzzy entropy is then calculated as:
2.2. New Approaches
- The first approach is inspired by [3,7]. In the latter studies, the interest in centering each m-pattern has been shown. In this case, instead of limiting the search of m-patterns with the same mean value, any pattern can be taken into account. Therefore, the number of similar patterns drastically increases.Therefore, in the first approach, a centered m-pattern is compared to a reference centered m-pattern . The similarity degree is calculated with , where and , through a similarity function:As shown in Figure 3a, removing the mean value of 2-patterns increases the number of centered similar 2-patterns since the number of centered 2-patterns similar to ‘1’ is six compared to one when the centering approach is not used. From Figure 3b, the total number of centered similar 2-patterns is 25: (‘1’,‘9’,‘13’,‘15’,‘17’,‘24’), (‘2’,‘14’,‘25’), (‘3’,‘8’,‘20’), (‘4’,‘23’), (‘5’,‘7’,‘10’,‘19’,‘21’), (‘11’,‘18’), (‘12’,‘16’), (‘22’,‘26’). The total number of similar centered 2-patterns is much larger than no-centered 2-patterns.
- The second approach is inspired by [8], where transformed patterns are compared to reference patterns. Thus, in the second approach, a transformed m-pattern (see below) is compared to a reference m-pattern . The similarity degree is calculated with the same membership function as the one reported in Equation (2):Four types of operations with are evaluated:
- corresponds to a translation of n samples, ;
- corresponds to a reflection at the position n, ;
- corresponds to an inversion at the position n, ;
- corresponds to a glide reflection of n samples, .
At first sight, any type of operation could be used. However, from our point of view, only isometries (translation T, reflection R, inversion I and glide reflection G) are suitable. This statement is supported by the recent work reported in [8] where the concept of symmetry was placed back on stage in the study of time series. Indeed, in [8], it was shown that the concept of recurrences could be generalized by taking into account the symmetry properties of m-patterns. As entropy can be derived from the recurrence concept (the recurrence plot [9] is defined as with ), from [8], four new kinds of entropy (, , , or , , , or , , , ) can be proposed. Finally, as our ultimate goal is to increase the precision of FuzzyEn, it is more appropriate here to calculate the mean value of the four new fuzzy entropies. In this case, the averaged fuzzy entropy FuzzyEn is defined as:As shown in Figure 3b, the transformation of the 2-patterns increases the number of similar 2-patterns. From Figure 3b, for the 2-pattern (‘1’), four kinds of 2-patterns can be obtained: 2-patterns with translation (‘T’) in black (‘1’,‘15’), 2-patterns with vertical reflection (‘R’) in red (‘7’,‘19’), 2-patterns with inversion (‘I’) in green (‘13’,‘24’) and 2-patterns with glide reflection (‘G’) in blue (‘5’,‘21’). By considering all 2-patterns ranging from ‘1’–‘27’, the mean total number of symmetrical 2-patterns is with , , , . - The last approach compares a centered m-pattern to a transformed centered m-pattern . In this case, the centered and averaged fuzzy entropy FuzzyEn is defined as:As shown in Figure 3, one can observe that the combination of the centering and averaging operations globally increases the number of m-patterns taken into account in the calculation of the entropy measure. Furthermore, a centered m-pattern transformed by an inversion (‘I’) is similar to a centered m-pattern transformed by a translation (’T’). The same remark applies for glide and vertical reflection transformations of centered m-patterns.From Figure 3c, regarding the 2-pattern (‘1’), two kinds of centered 2-patterns can be obtained: 2-patterns (‘T’,‘I’) in black (‘1’,‘9’,‘13’,‘15’,‘17’,‘24’) and 2-patterns (‘R’,‘G’) in blue (‘5’,‘7’,‘10’,‘19’,‘21’). By considering all 2-patterns ranging from ‘1’–‘27’, the mean total number of symmetrical 2-patterns is with , , and .
3. Data Processed
3.1. Synthetic Signals
3.2. Biomedical Data
4. Results and Discussion
4.1. Results for the Synthetic Signals
- ;
- ;
- ;
- .
- ;
- ;
- .
4.2. Results for the Fetal Heart Rate Time Series
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
value | −1 | −0.8 | −0.6 | −0.4 | −0.2 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2 |
3.46 | 3.5 | 3.53 | 3.54 | 3.57 | 3.59 | 3.58 | 3.54 | 3.45 | 3.29 | 3.04 | 2.68 | 2.21 | 1.68 | 1.13 | 0.64 | |
3.17 | 3.21 | 3.25 | 3.26 | 3.28 | 3.28 | 3.28 | 3.25 | 3.16 | 3.00 | 2.76 | 2.40 | 1.93 | 1.42 | 0.93 | 0.54 | |
3.58 | 3.58 | 3.58 | 3.58 | 3.56 | 3.53 | 3.49 | 3.42 | 3.30 | 3.11 | 2.84 | 2.46 | 1.99 | 1.46 | 0.94 | 0.51 | |
3.14 | 3.17 | 3.2 | 3.22 | 3.24 | 3.24 | 3.23 | 3.20 | 3.12 | 2.97 | 2.73 | 2.37 | 1.90 | 1.40 | 0.93 | 0.57 | |
3.57 | 3.58 | 3.58 | 3.57 | 3.56 | 3.53 | 3.48 | 3.41 | 3.30 | 3.11 | 2.83 | 2.44 | 1.96 | 1.44 | 0.94 | 0.53 | |
0.05 | 0.08 | 0.07 | 0.08 | 0.09 | 0.08 | 0.08 | 0.10 | 0.08 | 0.05 | 0.08 | 0.11 | 0.16 | 0.24 | 0.25 | 0.23 | |
0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.08 | 0.11 | 0.17 | 0.22 | 0.22 | 0.18 | |
0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 | 0.07 | 0.11 | 0.18 | 0.23 | 0.23 | 0.20 | |
0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.04 | 0.08 | 0.11 | 0.13 | 0.13 | 0.10 | |
0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.05 | 0.08 | 0.11 | 0.14 | 0.14 | 0.11 | |
0.63 | 0.75 | 1.24 | 1.09 | 1.17 | 1.04 | 1.10 | 0.99 | 0.90 | 0.43 | 0.12 | 0.00 | -0.05 | 0.10 | 0.16 | 0.29 | |
3.08 | 5.77 | 5.6 | 7.06 | 6.11 | 3.80 | 4.27 | 5.85 | 3.17 | 0.68 | 0.21 | -0.05 | -0.12 | 0.08 | 0.09 | 0.14 | |
1.95 | 2.09 | 3.26 | 3.34 | 4.38 | 2.53 | 2.78 | 2.72 | 2.03 | 1.33 | 0.89 | 0.40 | 0.50 | 0.89 | 1.03 | 1.39 | |
5.47 | 8.67 | 9.1 | 9.69 | 11.3 | 12.20 | 8.96 | 8.57 | 5.55 | 1.59 | 0.77 | 0.36 | 0.43 | 0.74 | 0.86 | 1.07 | |
1.49 | 2.86 | 1.95 | 2.87 | 2.27 | 1.35 | 1.51 | 2.44 | 1.19 | 0.18 | 0.08 | 0.05 | 0.07 | 0.02 | 0.07 | 0.12 | |
0.8 | 0.76 | 0.91 | 1.08 | 1.48 | 0.73 | 0.80 | 0.87 | 0.59 | 0.63 | 0.69 | 0.40 | 0.58 | 0.72 | 0.75 | 0.86 | |
2.96 | 4.51 | 3.52 | 4.13 | 4.66 | 5.46 | 3.74 | 3.81 | 2.44 | 0.81 | 0.59 | 0.36 | 0.51 | 0.59 | 0.60 | 0.61 |
value | −1 | −0.8 | −0.6 | −0.4 | −0.2 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2 |
3.47 | 3.51 | 3.48 | 3.54 | 3.56 | 3.57 | 3.54 | 3.58 | 3.43 | 3.27 | 3.01 | 2.65 | 2.18 | 1.66 | 1.13 | 0.64 | |
3.02 | 3.1 | 3.12 | 3.15 | 3.2 | 3.18 | 3.16 | 3.15 | 3.04 | 2.88 | 2.61 | 2.26 | 1.80 | 1.30 | 0.84 | 0.49 | |
3.28 | 3.27 | 3.28 | 3.29 | 3.27 | 3.26 | 3.22 | 3.16 | 3.05 | 2.87 | 2.59 | 2.22 | 1.77 | 1.26 | 0.80 | 0.44 | |
2.99 | 3.02 | 3.04 | 3.07 | 3.11 | 3.10 | 3.10 | 3.05 | 2.97 | 2.82 | 2.58 | 2.22 | 1.77 | 1.29 | 0.84 | 0.51 | |
3.21 | 3.22 | 3.23 | 3.24 | 3.23 | 3.22 | 3.18 | 3.12 | 3.02 | 2.85 | 2.59 | 2.21 | 1.74 | 1.25 | 0.80 | 0.47 | |
0.51 | 0.49 | 0.43 | 0.5 | 0.66 | 0.58 | 0.59 | 0.39 | 0.40 | 0.35 | 0.19 | 0.18 | 0.18 | 0.21 | 0.25 | 0.23 | |
0.17 | 0.16 | 0.13 | 0.17 | 0.23 | 0.17 | 0.18 | 0.14 | 0.17 | 0.11 | 0.09 | 0.11 | 0.17 | 0.19 | 0.20 | 0.16 | |
0.05 | 0.04 | 0.03 | 0.03 | 0.05 | 0.03 | 0.04 | 0.04 | 0.03 | 0.05 | 0.08 | 0.11 | 0.17 | 0.20 | 0.20 | 0.16 | |
0.09 | 0.07 | 0.08 | 0.07 | 0.06 | 0.07 | 0.08 | 0.07 | 0.06 | 0.06 | 0.05 | 0.07 | 0.10 | 0.13 | 0.12 | 0.09 | |
0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.08 | 0.11 | 0.13 | 0.12 | 0.09 | |
1.95 | 2.13 | 2.46 | 1.86 | 1.94 | 2.48 | 2.23 | 1.78 | 1.38 | 2.21 | 1.15 | 0.54 | 0.08 | 0.08 | 0.25 | 0.42 | |
10.08 | 11.6 | 11.8 | 14.54 | 12.6 | 16.19 | 14.51 | 8.33 | 11.03 | 5.97 | 1.49 | 0.58 | 0.05 | 0.03 | 0.25 | 0.41 | |
4.68 | 5.55 | 4.51 | 5.74 | 9.74 | 7.20 | 6.06 | 4.93 | 6.25 | 4.90 | 3.12 | 1.60 | 0.74 | 0.64 | 1.17 | 1.62 | |
26.88 | 22.74 | 17.41 | 28.43 | 33.81 | 30.33 | 30.39 | 21.08 | 23.78 | 16.41 | 4.91 | 1.34 | 0.59 | 0.57 | 1.09 | 1.55 | |
2.75 | 3.03 | 2.7 | 4.43 | 3.63 | 3.93 | 3.80 | 2.36 | 4.05 | 1.17 | 0.16 | 0.03 | 0.03 | 0.05 | 0.00 | 0.00 | |
0.92 | 1.1 | 0.59 | 1.36 | 2.65 | 1.35 | 1.18 | 1.13 | 2.05 | 0.84 | 0.91 | 0.69 | 0.61 | 0.52 | 0.74 | 0.85 | |
8.44 | 6.59 | 4.32 | 9.28 | 10.84 | 8.00 | 8.71 | 6.94 | 9.41 | 4.42 | 1.74 | 0.52 | 0.47 | 0.45 | 0.68 | 0.79 |
value | −1 | −0.8 | −0.6 | −0.4 | −0.2 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2 |
- | - | - | - | - | - | - | - | - | - | 2.95 | 2.71 | 2.19 | 1.59 | 1.13 | 0.64 | |
3.09 | 3.02 | 2.95 | 3.08 | 3.01 | 3.26 | 3.17 | 3.13 | 2.99 | 2.75 | 2.50 | 2.13 | 1.70 | 1.17 | 0.78 | 0.45 | |
3.15 | 3.15 | 3.14 | 3.15 | 3.19 | 3.14 | 3.13 | 3.08 | 2.95 | 2.79 | 2.51 | 2.11 | 1.70 | 1.16 | 0.76 | 0.43 | |
2.73 | 2.73 | 2.84 | 2.77 | 2.81 | 2.92 | 2.84 | 2.87 | 2.72 | 2.55 | 2.35 | 2.05 | 1.65 | 1.19 | 0.78 | 0.47 | |
3.08 | 3.11 | 3.12 | 3.11 | 3.11 | 3.12 | 3.09 | 3.04 | 2.93 | 2.76 | 2.51 | 2.14 | 1.67 | 1.19 | 0.76 | 0.44 | |
- | - | - | - | - | - | - | - | - | - | 1.09 | 0.49 | 0.26 | 0.28 | 0.26 | 0.22 | |
0.61 | 0.39 | 0.71 | 0.59 | 0.58 | 0.80 | 0.63 | 0.58 | 0.29 | 0.40 | 0.22 | 0.18 | 0.16 | 0.21 | 0.19 | 0.15 | |
0.21 | 0.16 | 0.16 | 0.15 | 0.12 | 0.14 | 0.12 | 0.11 | 0.08 | 0.06 | 0.09 | 0.14 | 0.16 | 0.23 | 0.19 | 0.15 | |
0.27 | 0.19 | 0.29 | 0.28 | 0.29 | 0.27 | 0.29 | 0.26 | 0.24 | 0.19 | 0.09 | 0.10 | 0.10 | 0.10 | 0.11 | 0.08 | |
0.09 | 0.1 | 0.1 | 0.08 | 0.07 | 0.07 | 0.05 | 0.06 | 0.04 | 0.03 | 0.03 | 0.06 | 0.11 | 0.10 | 0.12 | 0.09 | |
- | - | - | - | - | - | - | - | - | - | 4.03 | 1.75 | 0.64 | 0.31 | 0.38 | 0.49 | |
- | - | - | - | - | - | - | - | - | - | 11.29 | 2.60 | 0.59 | 0.22 | 0.40 | 0.44 | |
- | - | - | - | - | - | - | - | - | - | 11.06 | 4.13 | 1.54 | 1.93 | 1.44 | 1.70 | |
- | - | - | - | - | - | - | - | - | - | 34.58 | 6.91 | 1.33 | 1.92 | 1.27 | 1.54 | |
1.89 | 1.37 | 3.38 | 2.97 | 3.94 | 4.77 | 4.26 | 4.10 | 2.76 | 6.28 | 1.44 | 0.31 | 0.03 | 0.07 | 0.01 | 0.03 | |
1.28 | 1.03 | 1.49 | 1.13 | 1 | 2.02 | 1.16 | 1.26 | 0.23 | 1.07 | 1.40 | 0.86 | 0.55 | 1.24 | 0.77 | 0.82 | |
5.5 | 2.79 | 6.16 | 6.22 | 6.89 | 10.12 | 11.25 | 8.05 | 6.25 | 12.67 | 6.07 | 1.87 | 0.42 | 1.23 | 0.64 | 0.71 |
References
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hu, J. An approach to EEG-based gender recognition using entropy measurement methods. Knowl.-Based Syst. 2018, 140, 134–141. [Google Scholar] [CrossRef]
- Tibdewal, M.N.; Dey, H.R.; Mahadevappa, M.; Ray, A.; Malokar, M. Multiple entropies performance measure for detection and localization of multi-channel epileptic EEG. Biomed. Signal Process. Control 2017, 38, 158–167. [Google Scholar] [CrossRef]
- Hu, J.; Wang, P. Noise robustness analysis of performance for EEG-based driver fatigue detection using different entropy feature sets. Entropy 2017, 19, 385. [Google Scholar]
- Liu, C.; Li, K.; Zhao, L.; Liu, F.; Zheng, D.; Liu, C.; Liu, S. Analysis of heart rate variability using Fuzzy measure entropy. Comput. Biol. Med. 2013, 43, 100–108. [Google Scholar]
- Girault, J.-M. Recurrence and symmetry of time series: Application to transition detection. Chaos Solitons Fractals 2015, 77, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, J.P.; Oliffson Kamphorts, S.; Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 1987, 4, 973–977. [Google Scholar] [CrossRef]
- Tarnopolski, M. On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points. Phys. A 2016, 461, 662–673. [Google Scholar] [CrossRef]
- Voicu, I.; Menigot, S.; Kouamé, D.; Girault, J.-M. New estimators and guidelines for better use of fetal heart rate estimators with Doppler ultrasound devices. Comput. Math. Methods Med. 2014, 2014, 784862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Zhou, D.; Li, K.; Liu, H. Interface Prostheses With Classifier-Feedback-Based User Training. IEEE Trans. Biomed. Eng. 2017, 64, 2575–2583. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Fang, Y.; Botzheim, J.; Kubota, N.; Liu, H. Bacterial memetic algorithm based feature selection for surface EMG based hand motion recognition in long-term use. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI); IEEE: Piscataway Township, NJ, USA, 2016; pp. 1–7. [Google Scholar]
- Humeau-Heurtier, A.; Mahé, G.; Durand, S.; Abraham, P. Multiscale entropy study of medical laser speckle contrast images. IEEE Trans. Biomed. Eng. 2013, 60, 872–879. [Google Scholar] [CrossRef] [PubMed]
−1 | −0.8 | −0.6 | −0.4 | −0.2 | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | |
0.73 | 0.69 | 0.65 | 0.62 | 0.6 | 0.63 | 0.63 | 0.67 | 0.80 | 1.07 | 1.76 | 3.64 | 9.24 | 26.47 | 71.68 | 162.38 | |
16.71 | 17.03 | 17.48 | 18.13 | 19.18 | 20.75 | 23.19 | 27.35 | 35.71 | 53.15 | 93.73 | 206.09 | 540.00 | 1580.67 | 4317.40 | 9277.86 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girault, J.-M.; Humeau-Heurtier, A. Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision. Entropy 2018, 20, 287. https://doi.org/10.3390/e20040287
Girault J-M, Humeau-Heurtier A. Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision. Entropy. 2018; 20(4):287. https://doi.org/10.3390/e20040287
Chicago/Turabian StyleGirault, Jean-Marc, and Anne Humeau-Heurtier. 2018. "Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision" Entropy 20, no. 4: 287. https://doi.org/10.3390/e20040287