Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States
Abstract
:1. Introduction
2. Qubits and Generalized Weyl–Heisenberg Algebra
2.1. Bosonic and Fermionic Algebras
2.2. Qubit Algebra
2.3. Qudit Algebra
3. Dicke States
3.1. Definitions
3.2. Dicke States and Representations of
3.3. Decomposition of Dicke States
3.4. Dicke States and Angular Momentum States
4. Separable Qudit States
4.1. Factorization of a Qudit
4.2. Separable States and Coherent States
5. Majorana Description
5.1. The Case
5.2. The Case N Arbitrary
5.3. The Cases , 3, 4, and 5
5.3.1. Case
5.3.2. Case
5.3.3. Case
5.3.4. Case
5.3.5. Case d Arbitrary
6. Fubini–Study Metric
6.1. The Separable Case
6.2. The Arbitrary Case
7. Majorana Stars and Zeros of the Bargmann Function
7.1. The Main Idea
7.2. Determining the Bargmann Zeros
7.3. Expression of in Terms of the Bargmann Zeros
7.4. Expression of in Terms of the Majorana Stars
7.5. Equation Satisfied by the Majorana Stars
8. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kimura, G. The Bloch vector for N-level systems. Phys. Lett. A 2003, 314, 339–349. [Google Scholar] [CrossRef]
- Kimura, G.; Kossakowski, A. The Bloch-vector space for N-level systems—The spherical-coordinate point of view. Open Syst. Inf. Dyn. 2005, 12, 207–229. [Google Scholar] [CrossRef]
- Bertlmann, R.A.; Krammer, P. Bloch vectors for qudits. J. Phys. A Math. Theor. 2008, 41, 235303. [Google Scholar] [CrossRef]
- Majorana, E. Atomi orientati in campo magnetico variabile. Nuovo Cimento 1932, 9, 43–50. [Google Scholar] [CrossRef]
- Dür, W.; Vidal, G.; Cirac, J.I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 2000, 62, 062314. [Google Scholar] [CrossRef]
- Verstraete, F.; Dehaene, J.; De Moor, B.; Verschelde, H. Four qubits can be entangled in nine different ways. Phys. Rev. A 2002, 65, 052112. [Google Scholar] [CrossRef]
- Bastin, T.; Krins, S.; Mathonet, P.; Godefroid, M.; Lamata, L.; Solano, E. Operational families of entanglement classes for symmetric N-qubit states. Phys. Rev. Lett. 2009, 103, 070503. [Google Scholar] [CrossRef] [PubMed]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef] [PubMed]
- Keyl, M.; Werner, R.F. How to correct small quantum errors. In Coherent Evolution in Noisy Environments; Lecture Notes in Physics; Buchleitner, A., Hornberger, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 611. [Google Scholar]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 1997, 78, 5022. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef]
- Ganczarek, W.; Kuś, M.; Życzkowski, K. Barycentric measure of quantum entanglement. Phys. Rev. A 2012, 85, 032314. [Google Scholar] [CrossRef]
- Anandan, J. A geometric approach to quantum mechanics. Found. Phys. 1991, 21, 1265–1284. [Google Scholar] [CrossRef]
- Schilling, T. Geometry of Quantum Mechanics. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 1996. [Google Scholar]
- Ashtekar, A.; Schilling, T.A. Geometrical formulation of quantum mechanics. In On Einstein’s Path; Harvey, A., Ed.; Springer: New York, NY, USA, 1999; pp. 23–65. [Google Scholar]
- Brody, D.C.; Hughston, L.P. Geometric quantum mechanics. J. Geom. Phys. 2000, 38, 19–53. [Google Scholar] [CrossRef]
- Kuś, M.; Życzkowski, K. Geometry of entangled states. Phys. Rev. A 2001, 63, 032307. [Google Scholar] [CrossRef]
- Bengtsson, I.; Brännlund, J.; Życzkowski, K. ℂPn, or, entanglement illustrated. Int. J. Mod. Phys. A 2002, 17, 4675–4695. [Google Scholar] [CrossRef]
- Brody, D.C.; Gustavsson, A.C.T.; Hughston, L.P. Entanglement of three-qubit geometry. J. Phys. Conf. Ser. 2007, 67, 012044. [Google Scholar] [CrossRef]
- Sakajii, A.; Licata, I.; Singh, J.; Felloni, S. New Trends in Quantum Information; Aracne Editrice S.r.l.: Roma, Italy, 2010. [Google Scholar]
- Mosseri, R.; Dandoloff, R. Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 2001, 34, 10243. [Google Scholar] [CrossRef]
- Wei, T.; Goldbart, P.M. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 2003, 68, 042307. [Google Scholar] [CrossRef]
- Hubener, R.; Kleinmann, M.; Wei, T.-C.; González-Guillén, C.; Gühne, O. Geometric measure of entanglement for symmetric states. Phys. Rev. A 2009, 80, 032324. [Google Scholar] [CrossRef]
- Aulbach, M.; Markham, D.; Murao, M. The maximally entangled symmetric state in terms of the geometric measure. New J. Phys. 2010, 12, 073025. [Google Scholar] [CrossRef]
- Martin, J.; Giraud, O.; Braun, P.A.; Braun, D.; Bastin, T. Multiqubit symmetric states with high geometric entanglement. Phys. Rev. A 2010, 81, 062347. [Google Scholar] [CrossRef]
- Chen, L.; Aulbach, M.; Hajdušek, M. Comparison of different definitions of the geometric measure of entanglement. Phys. Rev. A 2014, 89, 042305. [Google Scholar] [CrossRef]
- Baguette, D.; Bastin, T.; Martin, J. Multiqubit symmetric states with maximally mixed one-qubit reductions. Phys. Rev. A 2014, 90, 032314. [Google Scholar] [CrossRef]
- Miyake, A. Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 2003, 67, 012108. [Google Scholar] [CrossRef]
- Heydari, H. Geometrical structure of entangled states and the secant variety. Quantum Inf. Process. 2008, 7, 43–50. [Google Scholar] [CrossRef]
- Holweck, F.; Luque, J.-G.; Thibon, J.-Y. Geometric descriptions of entangled states by auxiliary varieties. J. Math. Phys. 2012, 53, 102203. [Google Scholar] [CrossRef]
- Radcliffe, J.M. Some properties of coherent spin states. J. Phys. A Gen. Phys. 1971, 4, 313. [Google Scholar] [CrossRef]
- Mandilara, A.; Coudreau, T.; Keller, A.; Milman, P. Entanglement classification of pure symmetric states via spin coherent states. Phys. Rev. A 2014, 90, 050302. [Google Scholar] [CrossRef]
- Stockton, J.K.; Geremia, J.M.; Doherty, A.C.; Mabuchi, H. Characterizing the entanglement of symmetric many-particle spin- systems. Phys. Rev. A 2003, 67, 022112. [Google Scholar] [CrossRef]
- Mathonet, P.; Krins, S.; Godefroid, M.; Lamata, L.; Solano, E.; Bastin, T. Entanglement equivalence of N-qubit symmetric states. Phys. Rev. A 2010, 81, 052315. [Google Scholar] [CrossRef]
- Markham, D.J.H. Entanglement and symmetry in permutation-symmetric states. Phys. Rev. A 2011, 83, 042332. [Google Scholar] [CrossRef]
- Augusiak, R.; Tura, J.; Samsonowicz, J.; Lewenstein, M. Entangled symmetric states of N qubits with all positive partial transpositions. Phys. Rev. A 2012, 86, 042316. [Google Scholar] [CrossRef]
- Aulbach, M. Classification of entanglement in symmetric states. Int. J. Quantum Inf. 2012, 10, 1230004. [Google Scholar] [CrossRef]
- Novo, L.; Moroder, T.; Gühne, O. Genuine multiparticle entanglement of permutationally invariant states. Phys. Rev. A 2013, 88, 012305. [Google Scholar] [CrossRef]
- Tóth, G.; Wieczorek, W.; Gross, D.; Krischek, R.; Schwemmer, C.; Weinfurter, H. Permutationally invariant quantum tomography. Phys. Rev. Lett. 2010, 105, 250403. [Google Scholar] [CrossRef] [PubMed]
- Moroder, T.; Hyllus, P.; Tóth, G.; Schwemmer, C.; Niggebaum, A.; Gaile, S.; Gühne, O.; Weinfurter, H. Permutationally invariant state reconstruction. New J. Phys. 2012, 14, 105001. [Google Scholar] [CrossRef]
- Klimov, A.B.; Björk, G.; Sánchez-Soto, L.L. Optimal quantum tomography of permutationally invariant qubits. Phys. Rev. A 2013, 87, 012109. [Google Scholar] [CrossRef]
- Dicke, R. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99. [Google Scholar] [CrossRef]
- Tóth, G. Detection of multipartite entanglement in the vicinity of symmetric Dicke states. J. Opt. Soc. Am. B 2007, 24, 275–282. [Google Scholar] [CrossRef]
- Bergmann, M.; Gühne, O. Entanglement criteria for Dicke states. J. Phys. A Math. Theor. 2013, 46, 385304. [Google Scholar] [CrossRef]
- Daoud, M.; Kibler, M.R. Fractional supersymmetry and hierarchy of shape invariant potentials. J. Math. Phys. 2006, 47, 122108. [Google Scholar] [CrossRef] [Green Version]
- Daoud, M.; Kibler, M.R. Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems. J. Phys. A Math. Theor. 2010, 43, 115303. [Google Scholar] [CrossRef] [Green Version]
- Daoud, M.; Kibler, M.R. Phase operators, phase states and vector phase states for SU3 and SU2,1. J. Math. Phys. 2011, 52, 082101. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-A.; Lidar, D.A. Qubits as parafermions. J. Math. Phys. 2002, 43, 4506–4525. [Google Scholar] [CrossRef]
- Frydryszak, A.M. Nilpotent quantum mechanics, qubits, and flavors of entanglement. arXiv, 2008; arXiv:0810.3016. [Google Scholar]
- Palev, T.D. Lie Algebraical Aspects of Quantum Statistics. Unitary Quantization (A-Quantization); Preprint JINR E17-10550, hep-th/9705032; Joint Institute for Nuclear Research: Dubna, Russia, 1977. [Google Scholar]
- Green, H.S. A generalized method of field quantization. Phys. Rev. 1953, 90, 270. [Google Scholar] [CrossRef]
- Condon, E.U.; Odabaşi, H. Atomic Structure; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Daoud, M.; Kibler, M.R. Bosonic and k-fermionic coherent states for a class of polynomial Weyl-Heisenberg algebras. J. Phys. A Math. Theor. 2012, 45, 244036. [Google Scholar] [CrossRef] [Green Version]
- Anandan, J.; Aharonov, Y. Geometry of quantum evolution. Phys. Rev. Lett. 1990, 65, 1697. [Google Scholar] [CrossRef] [PubMed]
- Bacry, H. Constellations and projective classical groups. Commun. Math. Phys. 1980, 72, 119–130. [Google Scholar] [CrossRef]
- Bargmann, V. On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 1961, 14, 187–214. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. The quantum strong subadditivity condition for systems without subsystems. Phys. Scr. 2014, 2014, 014030. [Google Scholar] [CrossRef]
- Kibler, M.R. Formulas for mutually unbiased bases in systems of qudits. In New Trends in Quantum Information; Sakajii, A., Licata, I., Singh, J., Felloni, S., Eds.; Aracne Editrice S.r.l.: Roma, Italy, 2010; pp. 191–210. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoud, M.; Kibler, M.R. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Entropy 2018, 20, 292. https://doi.org/10.3390/e20040292
Daoud M, Kibler MR. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Entropy. 2018; 20(4):292. https://doi.org/10.3390/e20040292
Chicago/Turabian StyleDaoud, Mohammed, and Maurice R. Kibler. 2018. "Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States" Entropy 20, no. 4: 292. https://doi.org/10.3390/e20040292
APA StyleDaoud, M., & Kibler, M. R. (2018). Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Entropy, 20(4), 292. https://doi.org/10.3390/e20040292