Diffusion on Middle-ξ Cantor Sets
Abstract
:1. Introduction
2. Basic Tools in the Fractal Calculus
2.1. Middle- Cantor Sets
2.2. Local Fractal Calculus
2.3. -Differentiation
3. Staircase Functions on Middle- Cantor Sets
3.1. The Cantor Triadic Set
- Step 1. Remove an open interval of length from the middle of the interval .
- Step 2. Remove an open interval of length from the middle of each one of the closed intervals with length remaining from step 1.
- ...
- Step k. Remove an open interval of length from the middle of each one of the closed intervals with length remaining from step .
3.2. The 5-Adic-Type Cantor-Like Set
4. Differential Equations on Middle- Cantor Sets
5. Diffusion on Middle- Cantor Sets
5.1. Super-Diffusion
5.2. Normal Diffusion
5.3. Sub-Diffusion
- 1.
- The diffusion is super-diffusion on the middle-ξ Cantor set if .
- 2.
- The diffusion is normal on the middle-ξ Cantor set if .
- 3.
- The diffusion is sub-diffusion on the middle-ξ Cantor set if .
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barnsley, M.F. Fractals Everywhere; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Cohen, N. Fractal Antenna Applications in Wireless Telecommunications: Electronics Industries Forum of New England; IEEE: Toulouse, France, 1997. [Google Scholar]
- Cohen, N. Fractal Antennas: Part 2. Commun. Q. 1996, 44, 53–66. [Google Scholar]
- Werner, D.H.; Haupt, R.; Werner, P.L. Fractal Antenna Engineering: The Theory and Design of Fractal Antenna Arrays. IEEE Antennas Propag. Mag. 1999, 41, 37–59. [Google Scholar] [CrossRef]
- Gazit, Y.; Baish, J.W.; Sfabakhsh, N.; Leunig, M.; Baxter, L.T.; Jain, R.K. Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation 1997, 4, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Gazit, Y.; Berk, D.A.; Leunig, M.; Baxter, L.T.; Jain, R.K. Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys. Rev. Lett. 1995, 75, 2428–2431. [Google Scholar] [CrossRef] [PubMed]
- Baish, J.W.; Jain, R.K. Fractals and cancer. Cancer Res. 2002, 60, 3683–3688. [Google Scholar]
- Koh, K.J.; Park, H.N.; Kim, K.A. Prediction of age-related osteoporosis using fractal analysis on panoramic radiographs. Imaging Sci. Dent. 2012, 42, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.P.; Micolich, A.P.; Jonas, D. Fractal analysis of Pollock’s drip paintings. Nature 1999, 399, 422. [Google Scholar] [CrossRef]
- Bountis, T.; Fokas, A.S.; Psarakis, E.Z. Fractal analysis of tree paintings by Piet Mondrian (1872–1944). Int. J. Arts Technol. 2017, 10, 27–42. [Google Scholar] [CrossRef]
- Balankin, A.S.; Mena, B.; Martínez-González, C.L.; Matamoros, D.M. Random walk in chemical space of Cantor dust as a paradigm of superdiffusion. Phys. Rev. E 2012, 86, 052101. [Google Scholar] [CrossRef] [PubMed]
- Balankin, A.S. Effective degrees of freedom of a random walk on a fractal. Phys. Rev. E 2015, 92, 062146. [Google Scholar] [CrossRef] [PubMed]
- Golmankhaneh, A.K.; Baleanu, D. New heat and Maxwell’s equations on Cantor cubes. Rom. Rep. Phys. 2017, 69, 109. [Google Scholar]
- Ori, O.; Cataldo, F.; Vukicevic, D.; Graovac, A. Wiener way to dimensionality. Iranian J. Math. Chem. 2010, 1, 5–15. [Google Scholar]
- Poirier, D.R.; Geiger, G.H. Fick’s Law and Diffusivity of Materials. In Transport Phenomena in Materials Processing; Springer: Cham, The Netherlands, 2016. [Google Scholar]
- Ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Petersen, J.S.; Mack, C.A.; Sturtevant, J.L.; Byers, J.D.; Miller, D.A. Nonconstant diffusion coefficients: Short description of modeling and comparison to experimental results. In Advances in Resist Technology and Processing XII; International Society for Optics and Photonics: Bellingham, WA, USA, 1995; Volume 2438, pp. 167–181. [Google Scholar]
- Lindner, B. Diffusion Coefficient of a Brownian Particle with a Friction Function Given by a Power Law. J. Stat. Phys. 2008, 130, 523–533. [Google Scholar] [CrossRef]
- Schell, M.; Fraser, S.; Kapral, R. Diffusive dynamics in systems with translational symmetry: A one-dimensional-map model. Phys. Rev. A 1982, 26, 504–521. [Google Scholar] [CrossRef]
- Klages, R.; Dorfman, J.R. Simple Maps with Fractal Diffusion Coefficients. Phys. Rev. Lett. 1995, 74, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Schieferstein, E.; Heinrich, P. Diffusion Coefficients Calculated for Microporous Solids from Structural Parameters Evaluated by Fractal Geometry. Langmuir 1997, 13, 1723–1728. [Google Scholar] [CrossRef]
- Gmachowski, L. Fractal model of anomalous diffusion. Eur. Biophys. J. 2015, 44, 613–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujan-Nuňez, M.C. Scaling behavior of Brownian motion interacting with an external field. Mol. Phys. 1998, 94, 361–371. [Google Scholar] [CrossRef]
- Miyaguchi, T.; Akimoto, T. Anomalous diffusion in a quenched-trap model on fractal lattices. Phys. Rev. E 2015, 91, 010102. [Google Scholar] [CrossRef] [PubMed]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers Vol. 1 Background and Theory. Vol 2. Application; Springer: Berlin, Germany, 2013. [Google Scholar]
- Tatom, F.B. The relationship between fractional calculus and fractals. Fractals 1995, 3, 217–229. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigmatullin, R.R.; Le Mehaute, A. Is there geometrical/physical meaning of the fractional integral with complex exponent. J. Non-Cryst. Solids 2005, 351, 2888–2899. [Google Scholar] [CrossRef]
- Richard, H. Fractional Calculus: An Introduction for Physicists; World Scientific: London, UK, 2014. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: London, UK, 2000. [Google Scholar]
- Asad, H.; Mughal, M.J.; Zubair, M.; Naqvi, Q.A. Electromagnetic Green’s function for fractional space. J. Electromagn. Wave 2012, 26, 1903–1910. [Google Scholar] [CrossRef]
- Zubair, M.; Mughal, M.J.; Naqvi, Q.A. Electromagnetic Fields and Waves in Fractional Dimensional Space; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Parvate, A.; Gangal, A.D. Calculus on fractal subsets of real-line I: Formulation. Fractals 2009, 17, 53–148. [Google Scholar] [CrossRef]
- Parvate, A.; Gangal, A.D. Calculus on fractal subsets of real line II: Conjugacy with ordinary calculus. Fractals 2011, 19, 271–290. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Baleanu, D. Fractal calculus involving Gauge function. Commun. Nonlinear Sci. 2016, 37, 125–130. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Golmankhaneh, A.K.; Baleanu, D. About Schrödinger equation on fractals curves imbedding in R3. Int. J. Theor. Phys. 2015, 54, 1275–1282. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Baleanu, D. Diffraction from fractal grating Cantor sets. J. Mod. Opt. 2016, 63, 1364–1369. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Baleanu, D. New derivatives on the fractal subset of Real-line. Entropy 2016, 18, 1. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Baleanu, D. Non-local Integrals and Derivatives on Fractal Sets with Applications. Open Phys. 2016, 14, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Golmankhaneh, A.K.; Tunc, C. On the Lipschitz condition in the fractal calculus. Chaos Soliton Fract. 2017, 95, 140–147. [Google Scholar] [CrossRef]
- Ashrafi, S.; Golmankhaneh, A.K. Energy Straggling Function by Fα-Calculus. ASME J. Comput. Nonlinear Dyn. 2017, 12, 051010. [Google Scholar] [CrossRef]
- Sandev, T.; Iomin, A.; Kantz, H. Anomalous diffusion on a fractal mesh. Phys. Rev. E 2017, 95, 052107. [Google Scholar] [CrossRef] [PubMed]
- Sandev, T.; Iomin, A.; Méndez, V. Lévy processes on a generalized fractal comb. J. Phys. A Math. Theor. 2016, 49, 355001. [Google Scholar] [CrossRef] [Green Version]
- Iomin, A. Subdiffusion on a fractal comb. Phys. Rev. E 2011, 83, 052106. [Google Scholar] [CrossRef] [PubMed]
- Zhokh, A.; Trypolskyi, A.; Strizhak, P. Relationship between the anomalous diffusion and the fractal dimension of the environment. Chem. Phys. 2018, 503, 71–76. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Balankin, A.S. Sub-and super-diffusion on Cantor sets: Beyond the paradox. Phys. Lett. A 2018, 382, 960–967. [Google Scholar] [CrossRef]
- Balankin, A.S.; Golmankhaneh, A.K.; Patiño-Ortiz, J.; Patiño-Ortiz, M. Noteworthy fractal features and transport properties of Cantor tartans. Phys. Lett. A 2018, 382, 1534–1539. [Google Scholar] [CrossRef]
- Robert, D.; Urbina, W. On Cantor-like sets and Cantor-Lebesgue singular functions. arXiv, 2014; arXiv:1403.6554. [Google Scholar]
- Kraft, R.L. What’s the difference between Cantor sets? Am. Math. Mon. 1994, 101, 640–650. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalili Golmankhaneh, A.; Fernandez, A.; Khalili Golmankhaneh, A.; Baleanu, D. Diffusion on Middle-ξ Cantor Sets. Entropy 2018, 20, 504. https://doi.org/10.3390/e20070504
Khalili Golmankhaneh A, Fernandez A, Khalili Golmankhaneh A, Baleanu D. Diffusion on Middle-ξ Cantor Sets. Entropy. 2018; 20(7):504. https://doi.org/10.3390/e20070504
Chicago/Turabian StyleKhalili Golmankhaneh, Alireza, Arran Fernandez, Ali Khalili Golmankhaneh, and Dumitru Baleanu. 2018. "Diffusion on Middle-ξ Cantor Sets" Entropy 20, no. 7: 504. https://doi.org/10.3390/e20070504
APA StyleKhalili Golmankhaneh, A., Fernandez, A., Khalili Golmankhaneh, A., & Baleanu, D. (2018). Diffusion on Middle-ξ Cantor Sets. Entropy, 20(7), 504. https://doi.org/10.3390/e20070504