New Estimations for Shannon and Zipf–Mandelbrot Entropies
Abstract
:1. Introduction
2. Estimations for the Shannon Entropy
3. Estimations for the Zipf–Mandelbrot Entropy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Latif, N.; Pečarić, Đ.; Pečarić, J. Majorization, Csiszár divergence and Zipf-Mandelbrot law. J. Inequal. Appl. 2017, 2017, 197. [Google Scholar] [CrossRef] [PubMed]
- Quastler, H. (Ed.) Essays on the Use of Information Theory in Biology; University of Illinois: Urbana, IL, USA, 1953. [Google Scholar]
- Sherwin, W.B. Entropy and information approaches to genetic diversity and its expression: Genomic geography. Entropy 2010, 12, 1765–1798. [Google Scholar] [CrossRef]
- Zhou, R.-X.; Cai, R.; Tong, G.-Q. Applications of entropy in finance: A review. Entropy 2013, 15, 4909–4931. [Google Scholar] [CrossRef]
- Guisado, J.L.; Jiménez-Morales, F.; Guerra, J.M. Application of shannon’s entropy to classify emergent behaviors in a simulation of laser dynamics. Math. Comput. Model. 2005, 42, 847–854. [Google Scholar] [CrossRef]
- Wellmann, J.F.; Regenauer-Lieb, K. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models. Tectonophysics 2012, 526–529, 207–216. [Google Scholar] [CrossRef]
- Adil Khan, M.; Pečarić, Đ.; Pečarić, J. Bounds for Shannon and Zipf-Mandelbrot entropies. Math. Methods Appl. Sci. 2017, 40, 7316–7322. [Google Scholar] [CrossRef]
- Silagadze, Z.K. Citations and the Zipf-Mandelbrot’s law. Complex Syst. 1997, 11, 487–499. [Google Scholar]
- Kristian, G.; Jens, S. Zipf’s law for cities in the regions and the country. J. Econ. Geogr. 2010, 11, 667–686. [Google Scholar]
- Merriam, D.F.; Drew, L.J.; Schuenemeyer, J.H. Zipf’s law: A viable geological paradigm? Nat. Resour. Res. 2004, 13, 265–271. [Google Scholar] [CrossRef]
- Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef]
- Parkins, S. Website Traffic and Zipf’s Law. 2015. Available online: http://www.linkedin.com/pulse/website-traffic-zipfs-law-shane-parkins?articleId=6064338455452807169 (accessed on 26 October 2015).
- Hefeeda, M.; Saleh, O. Traffic modeling and proportional partial caching for peer-to-peer systems. IEEE/ACM Trans. Netw. 2008, 16, 1447–1460. [Google Scholar] [CrossRef]
- Neukum, G.; Ivanov, B.A. Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data. In Hazards Due to Comets & Asteroids; University Arizona Press: Tucson, AZ, USA, 1994. [Google Scholar]
- Montemurro, M.A. Beyond the Zipf-Mandelbrot law in quantitative linguistics. Phys. A Stat. Mech. Its Appl. 2001, 300, 567–578. [Google Scholar] [CrossRef]
- Manin, D.Y. Mandelbrot’s model for Zipf’s law: Can mandelbrot’s model explain Zipf’s law for language? J. Quant. Ling. 2009, 16, 274–285. [Google Scholar] [CrossRef]
- Mouillot, D.; Lepretre, A. Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess. 2000, 63, 279–295. [Google Scholar] [CrossRef]
- Lovričević, N.; Pečarić, Đ.; Pečarić, J. Zipf-Mandelbrot law, f-divergences and the Jensen-type interpolating inequalities. J. Inequal. Appl. 2018, 2018, 36. [Google Scholar]
- Adil Khan, M.; Ali Khan, G.; Alia, T.; Kilicman, A. On the refinement of Jensen’s inequality. Appl. Math. Comput. 2015, 262, 128–135. [Google Scholar]
- Dragomir, S.S. A refinement of Jensen’s inequality with applications for f-divergence measures. Taiwan. J. Math. 2010, 14, 153–164. [Google Scholar] [CrossRef]
- Adil Khan, M.; Pečaric, Đ.; Pečarić, J. On Zipf-Mandelbrot entropy. J. Comput. Appl. Math. 2019, 346, 192–204. [Google Scholar] [CrossRef]
- Dragomir, S.S. Bounds for the normalised Jensen functional. Bull. Aust. Math. Soc. 2006, 74, 471–478. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Gordji, M.E.; Pap, E.; Szakal, A. Jensen-type inequalities for Sugeno integral. Inf. Sci. 2017, 376, 148–157. [Google Scholar] [CrossRef]
- Dragomir, S.S. A new refinement of Jensen’s inequality in linear spaces with application. Math. Comput. Model. 2010, 52, 1497–1505. [Google Scholar] [CrossRef]
- Gelbukh, A.; Sidorov, G. Zipf and Heaps laws’ coefficients depend on language. Lect. Notes Comput. Sci. 2001, 2004, 332–335. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adil Khan, M.; Al-sahwi, Z.M.; Chu, Y.-M. New Estimations for Shannon and Zipf–Mandelbrot Entropies. Entropy 2018, 20, 608. https://doi.org/10.3390/e20080608
Adil Khan M, Al-sahwi ZM, Chu Y-M. New Estimations for Shannon and Zipf–Mandelbrot Entropies. Entropy. 2018; 20(8):608. https://doi.org/10.3390/e20080608
Chicago/Turabian StyleAdil Khan, Muhammad, Zaid Mohammad Al-sahwi, and Yu-Ming Chu. 2018. "New Estimations for Shannon and Zipf–Mandelbrot Entropies" Entropy 20, no. 8: 608. https://doi.org/10.3390/e20080608
APA StyleAdil Khan, M., Al-sahwi, Z. M., & Chu, Y.-M. (2018). New Estimations for Shannon and Zipf–Mandelbrot Entropies. Entropy, 20(8), 608. https://doi.org/10.3390/e20080608