Related Entropy Theories Application in Condition Monitoring of Rotating Machineries
Abstract
:1. Introduction
2. Shannon Entropy and Its Variants
2.1. Shannon Entropy
2.2. Variants of Shannon Entropy
2.2.1. Energy Entropy
2.2.2. Permutation Entropy
2.2.3. Rényi Entropy
2.2.4. Sample Entropy
2.2.5. Approximate Entropy
2.2.6. Fuzzy Entropy
3. Condition Monitoring of Bearing
3.1. Application of Shannon Entropy on Bearing
3.2. Application of Energy Entropy on Bearing
3.3. Application of Permutation Entropy on Bearing
3.4. Application of Rényi Entropy on Bearing
3.5. Application of Sample Entropy on Bearing
3.6. Application of Approximate Entropy on Bearing
3.7. Application of Fuzzy Entropy on Bearing
3.8. Other Typical Entropy Theories Application on Bearing
4. Condition Monitoring of Gear
4.1. Application of Shannon Entropy on Gear
4.2. Application of Energy Entropy on Gear
4.3. Application of Permutation Entropy on Gear
4.4. Other Typical Entropy Theories Application on Gear
5. Condition Monitoring of Other Rotating Machinery
5.1. Typical Entropy Theories Application on Fault Detection of Other Rotating Machinery
5.2. Typical Entropy Theories Application on Fault Diagnosis of Other Rotating Machinery
5.3. Typical Entropy Theories Application on Fault Prognostics of Other Rotating Machinery
6. Case Study
7. Summary and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Lu, S.; He, Q.; Wang, J. A review of stochastic resonance in rotating machine fault detection. Mech. Syst. Signal Process. 2019, 116, 230–260. [Google Scholar] [CrossRef]
- Li, C.; de Oliveira, J.L.V.; Lozada, M.C.; Cabrera, D.; Sanchez, V.; Zurita, G. A systematic review of fuzzy formalisms for bearing fault diagnosis. IEEE Trans. Fuzzy Syst. 2019, 27, 1362–1382. [Google Scholar] [CrossRef]
- Feng, Z.; Zhou, Y.; Zuo, M.J.; Chu, F.; Chen, X. Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: A review with examples. Measurement 2017, 103, 106–132. [Google Scholar] [CrossRef]
- Mo, Z.; Wang, J.; Zhang, H.; Miao, Q. Weighted cyclic harmonic-to-noise ratio for rolling element bearing fault diagnosis. IEEE Trans. Instrum. Meas. 2019. [Google Scholar] [CrossRef]
- Zhong, J.; Long, J.; Zhang, S.; Li, C. Flexible Kurtogram for Extracting Repetitive Transients for Prognostics and Health Management of Rotating Components. IEEE Access 2019, 7, 55631–55639. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans. Ind. Electron. 2017, 65, 1539–1548. [Google Scholar] [CrossRef]
- Cui, L.; Li, B.; Ma, J.; Jin, Z. Quantitative trend fault diagnosis of a rolling bearing based on Sparsogram and Lempel-Ziv. Measurement 2018, 128, 410–418. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Xiang, J.; Yang, J.; He, S. A hybrid approach to fault diagnosis of roller bearings under variable speed conditions. Meas. Sci. Technol. 2017, 28, 125104. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Ma, H.; Li, X.; Kang, R. A random fuzzy accelerated degradation model and statistical analysis. IEEE Trans. Fuzzy Syst. 2017, 26, 1638–1650. [Google Scholar] [CrossRef]
- Sun, F.; Liu, L.; Li, X.; Liao, H. Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion. Sensors 2016, 16, 1242. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Huang, J.; Zhang, F. Quantitative and localization diagnosis of a defective ball bearing based on vertical–horizontal synchronization signal analysis. IEEE Trans. Ind. Electron. 2017, 64, 8695–8706. [Google Scholar] [CrossRef]
- Wang, D.; Tsui, K.-L. Statistical modeling of bearing degradation signals. IEEE Trans. Reliab. 2017, 66, 1331–1344. [Google Scholar] [CrossRef]
- He, Q.; Wu, E.; Pan, Y. Multi-scale stochastic resonance spectrogram for fault diagnosis of rolling element bearings. J. Sound Vib. 2018, 420, 174–184. [Google Scholar] [CrossRef]
- Wang, D.; Miao, Q. Smoothness index-guided Bayesian inference for determining joint posterior probability distributions of anti-symmetric real Laplace wavelet parameters for identification of different bearing faults. J. Sound Vib. 2015, 345, 250–266. [Google Scholar] [CrossRef]
- Jiang, X.; Shen, C.; Shi, J.; Zhu, Z. Initial center frequency-guided VMD for fault diagnosis of rotating machines. J. Sound Vib. 2018, 435, 36–55. [Google Scholar] [CrossRef]
- Qin, Y. A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2017, 65, 2716–2726. [Google Scholar] [CrossRef]
- Sun, F.; Ning, W.; Li, X.; Wei, Z. Remaining useful life prediction for a machine with multiple dependent features based on Bayesian dynamic linear model and copulas. IEEE Access 2017, 5, 16277–16287. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, L.; Li, W. Regrouping particle swarm optimization based variable neural network for gearbox fault diagnosis. J. Intell. Fuzzy Syst. 2018, 34, 3671–3680. [Google Scholar] [CrossRef]
- Song, L.; Wang, H.; Chen, P. Step-by-step fuzzy diagnosis method for equipment based on symptom extraction and trivalent logic fuzzy diagnosis theory. IEEE Trans. Fuzzy Syst. 2018, 26, 3467–3478. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Z.; Yang, J. Feature trend extraction and adaptive density peaks search for intelligent fault diagnosis of machines. IEEE Trans. Ind. Inform. 2018, 15, 105–115. [Google Scholar] [CrossRef]
- Song, L.; Wang, H.; Chen, P. Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery. IEEE Trans. Instrum. Meas. 2018, 67, 1887–1899. [Google Scholar] [CrossRef]
- Wang, D.; Miao, Q.; Zhou, Q.; Zhou, G. An intelligent prognostic system for gear performance degradation assessment and remaining useful life estimation. J. Vib. Acoust. 2015, 137, 1–12. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X.; Zou, J. The optimized deep belief networks with improved logistic Sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines. IEEE Trans. Ind. Electron. 2018, 66, 3814–3824. [Google Scholar] [CrossRef]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly-accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, J.; Zhong, Y.; Zhou, Y. Convolutional neural network-based hidden Markov models for rolling element bearing fault identification. Knowl. Based Syst. 2018, 144, 65–76. [Google Scholar] [CrossRef]
- Tang, S.; Shen, C.; Wang, D.; Li, S.; Huang, W.; Zhu, Z. Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis. Neurocomputing 2018, 305, 1–14. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE Trans. Instrum. Meas. 2017, 66, 1693–1702. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Xu, M.; Huang, W. A review of early fault diagnosis approaches and their applications in rotating machinery. Entropy 2019, 21, 409. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Liu, D.; Zhang, Y.; Peng, Y. Entropy-based sensor selection for condition monitoring and prognostics of aircraft engine. Microelectron. Reliab. 2015, 55, 2092–2096. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Wei, Y.; Liu, B.; Liang, X. Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi-scale symbolic dynamic entropy. ISA Trans. 2018, 81, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, S.; Liu, D.; Peng, Y. Quantitative selection of sensor data based on improved permutation entropy for system remaining useful life prediction. Microelectron. Reliab. 2017, 75, 264–270. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. The multiscale entropy algorithm and its variants: A review. Entropy 2015, 17, 3110–3123. [Google Scholar] [CrossRef]
- Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation entropy and its main biomedical and econophysics applications: A review. Entropy 2012, 14, 1553–1577. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Liu, D.; Peng, Y. Quantitative description of sensor data monotonic trend for system degradation condition monitoring. In Proceedings of the Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21 October 2016. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Qin, X.; Li, Q.; Dong, X.; Lv, S. The fault diagnosis of rolling bearing based on ensemble empirical mode decomposition and random forest. Shock Vib. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Fadlallah, B.; Chen, B.; Keil, A.; Príncipe, J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 2013, 87, 022911. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Pan, H.; Yang, S.; Cheng, J. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis. Mech. Syst. Signal Process. 2018, 99, 229–243. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; University of California Press: Berkeley, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Cachin, C. Smooth entropy and Rényi entropy. In Proceedings of the International Conference on Theory & Application of Cryptographic Techniques, Konstanz, Germany, 11–15 May 1997. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, J.; Yang, Y.; Luo, S. A rolling bearing fault diagnosis method based on multi-scale fuzzy entropy and variable predictive model-based class discrimination. Mech. Mach. Theory 2014, 78, 187–200. [Google Scholar] [CrossRef]
- Jiang, H.; Xia, Y.; Wang, X. Rolling bearing fault detection using an adaptive lifting multiwavelet packet with a dimension spectrum. Meas. Sci. Technol. 2013, 24, 125002. [Google Scholar] [CrossRef]
- Kankar, P.; Sharma, S.C.; Harsha, S. Rolling element bearing fault diagnosis using autocorrelation and continuous wavelet transform. J. Vib. Control 2011, 17, 2081–2094. [Google Scholar] [CrossRef]
- Hemmati, F.; Orfali, W.; Gadala, M.S. Roller bearing acoustic signature extraction by wavelet packet transform, applications in fault detection and size estimation. Appl. Acoust. 2016, 104, 101–118. [Google Scholar] [CrossRef]
- Reddy, M.S.P.; reddy, D.M.; Devendiran, S.; Mathew, A.T. Bearing fault diagnosis using empirical mode decomposition, entropy based features and data mining techniques. Mater. Today Proc. 2018, 5, 11460–11475. [Google Scholar] [CrossRef]
- Leite, G.D.N.P.; Araújo, A.M.; Rosas, P.A.C.; Stosic, T.; Stosic, B. Entropy measures for early detection of bearing faults. Phys. A Stat. Mech. Appl. 2019, 514, 458–472. [Google Scholar] [CrossRef]
- Su, Z.; Tang, B.; Liu, Z.; Yi, Q. Multi-fault diagnosis for rotating machinery based on orthogonal supervised linear local tangent space alignment and least square support vector machine. Neurocomputing 2015, 157, 208–222. [Google Scholar] [CrossRef]
- Jing, Y.; Yu, W.; Peng, Y.; Wei, C. Weak fault detection and health degradation monitoring using customized standard multiwavelets. Mech. Syst. Signal Process. 2017, 94, 384–399. [Google Scholar]
- Wan, S.; Xiong, Z. Teager energy entropy ratio of wavelet packet transform and its application in bearing fault diagnosis. Entropy 2018, 20, 388. [Google Scholar] [CrossRef]
- Yao, Y.-C.; Chen, Y.-H.; Liu, C.-H.; Shih, W.-P. Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm. Int. J. Adv. Manuf. Technol. 2019, 103, 297–309. [Google Scholar] [CrossRef]
- Luo, J.; Dong, S.; Xu, X. Mechanical fault diagnosis method based on lmd shannon entropy and improved fuzzy c-means clustering. Int. J. Acoust. Vib. 2017, 22, 211–217. [Google Scholar]
- Ao, H.L.; Cheng, J.; Li, K.; Truong, T.K. A roller bearing fault diagnosis method based on LCD energy entropy and ACROA-SVM. Shock Vib. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform. Neurocomputing 2013, 110, 9–17. [Google Scholar] [CrossRef]
- Pang, B.; Tang, G.; Zhou, C.; Tian, T. Rotor fault diagnosis based on characteristic frequency band energy entropy and support vector machine. Entropy 2018, 20, 932. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, J.; Liu, H.; Shan, Y. A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder. ISA Trans. 2019, 87, 235–250. [Google Scholar] [CrossRef]
- An, X.; Pan, L. Bearing fault diagnosis of a wind turbine based on variational mode decomposition and permutation entropy. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2017, 231, 200–206. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Wang, R.; Huang, W. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J. Sound Vib. 2016, 360, 277–299. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Wu, B.; Wang, Y.; Xie, F. A hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings. Sensors 2017, 17, 1143. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Song, W.; Taheri, S. Improved LMD, permutation entropy and optimized K-means to fault diagnosis for roller bearings. Entropy 2016, 18, 70. [Google Scholar] [CrossRef]
- Xue, X.; Zhou, J. A hybrid fault diagnosis approach based on mixed-domain state features for rotating machinery. ISA Trans. 2017, 66, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Yang, J.; Bai, Y.; Cheng, X. Railway rolling bearing fault diagnosis based on multi-scale intrinsic mode function permutation entropy and extreme learning machine classifier. Adv. Mech. Eng. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, H.; Bai, F. Feature extraction for rolling bearing fault diagnosis by electrostatic monitoring sensors. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 1887–1903. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, G.; Liang, L.; Jiang, K. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 2015, 54–55, 259–276. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Yan, R. Rolling bearing fault diagnosis based on wavelet packet decomposition and multi-scale permutation entropy. Entropy 2015, 17, 6447–6461. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, T.; Zhu, K.; Yang, Y. Condition monitoring for the roller bearings of wind turbines under variable working conditions based on the fisher score and permutation entropy. Energies 2019, 12, 3085. [Google Scholar] [CrossRef]
- Yan, X.; Jia, M.; Zhao, Z. A novel intelligent detection method for rolling bearing based on IVMD and instantaneous energy distribution-permutation entropy. Measurement 2018, 130, 435–447. [Google Scholar] [CrossRef]
- Yasir, M.N.; Koh, B.-H. Data decomposition techniques with multi-scale permutation entropy calculations for bearing fault diagnosis. Sensors 2018, 18, 1278. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, Z.; Lu, C. Self-adaptive bearing fault diagnosis based on permutation entropy and manifold-based dynamic time warping. Mech. Syst. Signal Process. 2019, 114, 658–673. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, Y.; Yi, C. Optimized adaptive local iterative filtering algorithm based on permutation entropy for rolling bearing fault diagnosis. Entropy 2018, 20, 920. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, J.; Yang, Y. Multiscale permutation entropy based rolling bearing fault diagnosis. Shock Vib. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Xu, F.; Tse, P.W.T.; Fang, Y.J.; Liang, J.Q. A fault diagnosis method combined with compound multiscale permutation entropy and particle swarm optimization–support vector machine for roller bearings diagnosis. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 233, 615–627. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Xiong, Q.; Luo, D.; Mei, G.; Zhang, T. A rolling bearing fault diagnosis strategy based on improved multiscale permutation entropy and least squares SVM. J. Mech. Sci. Technol. 2017, 31, 2711–2722. [Google Scholar] [CrossRef]
- Huo, Z.; Zhang, Y.; Shu, L.; Gallimore, M. A new bearing fault diagnosis method based on fine-to-coarse multiscale permutation entropy, laplacian score and SVM. IEEE Access 2019, 7, 17050–17066. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [Google Scholar] [CrossRef]
- Dong, Z.; Zheng, J.; Huang, S.; Pan, H.; Liu, Q. Time-shift multi-scale weighted permutation entropy and GWO-SVM based fault diagnosis approach for rolling bearing. Entropy 2019, 21, 621. [Google Scholar] [CrossRef]
- Zhou, S.; Qian, S.; Chang, W.; Xiao, Y.; Cheng, Y. A novel bearing multi-fault diagnosis approach based on weighted permutation entropy and an improved SVM ensemble classifier. Sensors 2018, 18, 1934. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Gupta, V.K.; Kankar, P. Bearing fault diagnosis based on multi-scale permutation entropy and adaptive neuro fuzzy classifier. J. Vib. Control 2015, 21, 461–467. [Google Scholar] [CrossRef]
- Yi, C.; Lv, Y.; Ge, M.; Xiao, H.; Yu, X. Tensor singular spectrum decomposition algorithm based on permutation entropy for rolling bearing fault diagnosis. Entropy 2017, 19, 139. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, J. Fault diagnosis for rolling element bearings based on feature space reconstruction and multiscale permutation entropy. Entropy 2019, 21, 519. [Google Scholar] [CrossRef]
- Zheng, J.; Dong, Z.; Pan, H.; Ni, Q.; Liu, T.; Zhang, J. Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing. Measurement 2019, 143, 69–80. [Google Scholar] [CrossRef]
- Xue, X.; Li, C.; Cao, S.; Sun, J.; Liu, L. Fault diagnosis of rolling element bearings with a two-step scheme based on permutation entropy and random forests. Entropy 2019, 21, 96. [Google Scholar] [CrossRef]
- Boškoski, P.; Gašperin, M.; Petelin, D.; Juričić, Đ. Bearing fault prognostics using Rényi entropy based features and Gaussian process models. Mech. Syst. Signal Process. 2015, 52–53, 327–337. [Google Scholar] [CrossRef]
- Tao, B.; Zhu, L.; Ding, H.; Xiong, Y. Rényi entropy-based generalized statistical moments for early fatigue defect detection of rolling-element bearing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2007, 221, 67–79. [Google Scholar] [CrossRef]
- Singh, J.; Darpe, A.K.; Singh, S.P. Bearing damage assessment using Jensen-Rényi Divergence based on EEMD. Mech. Syst. Signal Process. 2016, 87, 307–339. [Google Scholar] [CrossRef]
- Liang, J.; Zhong, J.-H.; Yang, Z.-X. Correlated EEMD and effective feature extraction for both periodic and irregular faults diagnosis in rotating machinery. Energies 2017, 10, 1652. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Fault diagnosis based on optimized node entropy using lifting wavelet packet transform and genetic algorithms. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2010, 224, 557–573. [Google Scholar] [CrossRef]
- Seera, M.; Wong, M.L.D.; Nandi, A.K. Classification of ball bearing faults using a hybrid intelligent model. Appl. Soft Comput. 2017, 57, 427–435. [Google Scholar] [CrossRef]
- Han, M.; Pan, J. A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings. Measurement 2015, 76, 7–19. [Google Scholar] [CrossRef]
- Yang, F.; Kou, Z.; Wu, J.; Li, T. Application of mutual information-sample entropy based MED-ICEEMDAN De-noising scheme for weak fault diagnosis of hoist bearing. Entropy 2018, 20, 667. [Google Scholar] [CrossRef]
- Ni, Q.; Feng, K.; Wang, K.; Yang, B.; Wang, Y. A case study of sample entropy analysis to the fault detection of bearing in wind turbine. Case Stud. Eng. Fail. Anal. 2017, 9, 99–111. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Li, G.; Xu, M.; Huang, W. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection. Mech. Syst. Signal Process. 2017, 91, 295–312. [Google Scholar] [CrossRef]
- He, Y.; Huang, J.; Bo, Z. Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery. Meas. Sci. Technol. 2012, 23, 45603–45616. [Google Scholar] [CrossRef]
- Imaouchen, Y.; Kedadouche, M.; Alkama, R.; Thomas, M. A frequency-weighted energy operator and complementary ensemble empirical mode decomposition for bearing fault detection. Mech. Syst. Signal Process. 2017, 82, 103–116. [Google Scholar] [CrossRef]
- An, X.; Pan, L. Wind turbine bearing fault diagnosis based on adaptive local iterative filtering and approximate entropy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 3228–3237. [Google Scholar] [CrossRef]
- Sampaio, D.L.; Nicoletti, R. Detection of cracks in shafts with the approximated entropy algorithm. Mech. Syst. Signal Process. 2016, 72–73, 286–302. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, J.; Yu, Y. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy. Mech. Mach. Theory 2013, 70, 441–453. [Google Scholar] [CrossRef]
- Zheng, J. Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination. Arch. Civ. Mech. Eng. 2016, 16, 784–794. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Ma, L.; Cheng, J. A fault diagnosis approach for roller bearing based on improved intrinsic timescale decomposition de-noising and kriging-variable predictive model-based class discriminate. J. Vib. Control 2016, 22, 1431–1446. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, M.; Deng, W.; Yang, X. A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing. Entropy 2016, 19, 14. [Google Scholar] [CrossRef]
- Li, Y.; Miao, B.; Zhang, W.; Chen, P.; Liu, J.; Jiang, X. Refined composite multiscale fuzzy entropy: Localized defect detection of rolling element bearing. J. Mech. Sci. Technol. 2019, 33, 109–120. [Google Scholar] [CrossRef]
- Zhu, K.; Song, X. Cross-fuzzy entropy-based approach for performance degradation assessment of rolling element bearings. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2018, 232, 173–185. [Google Scholar] [CrossRef]
- Zair, M.; Rahmoune, C.; Benazzouz, D. Multi-fault diagnosis of rolling bearing using fuzzy entropy of empirical mode decomposition, principal component analysis, and SOM neural network. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 3317–3328. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, S.; Zhao, H.; Yang, X. A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing. IEEE Access 2018, 6, 35042–35056. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, L.; Hu, X. Rolling element bearing fault diagnosis by combining adaptive local iterative filtering, modified fuzzy entropy and support vector machine. Entropy 2018, 20, 926. [Google Scholar] [CrossRef]
- Liu, Q.; Pan, H.; Zheng, J.; Tong, J.; Bao, J. Composite interpolation-based multiscale fuzzy entropy and its application to fault diagnosis of rolling bearing. Entropy 2019, 21, 292. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, Z.; Pan, H. Sigmoid-based refined composite multiscale fuzzy entropy and t-SNE based fault diagnosis approach for rolling bearing. Measurement 2018, 129, 332–342. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, J.; Pan, H.; Bao, J.; Zhang, Y. Time-shift multiscale fuzzy entropy and laplacian support vector machine based rolling bearing fault diagnosis. Entropy 2018, 20, 602. [Google Scholar] [CrossRef]
- Zhu, K. Performance degradation assessment of rolling element bearings based on hierarchical entropy and general distance. J. Vib. Control 2018, 24, 3194–3205. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Li, X. Spectral entropy: A complementary index for rolling element bearing performance degradation assessment. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2009, 223, 1223–1231. [Google Scholar] [CrossRef]
- An, D.; Kim, N.H.; Choi, J. Bearing prognostics method based on entropy decrease at specific frequency. In Proceedings of the 18th AIAA Non-deterministic Approaches Conference, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Song, W.; Li, M.; Liang, J.K. Prediction of bearing fault using fractional Brownian motion and minimum entropy Deconvolution. Entropy 2016, 18, 418. [Google Scholar] [CrossRef]
- Han, L.; Li, C.; Liu, H. Feature extraction method of rolling bearing fault signal based on EEMD and cloud model characteristic entropy. Entropy 2015, 17, 6683–6697. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Wu, X.; Chen, Q. Application of EEMD and improved frequency band entropy in bearing fault feature extraction. ISA Trans. 2019, 88, 170–185. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, T.; Jin, X. Low speed bearing fault diagnosis based on EMD-CIIT histogram entropy and KFCM clustering. J. Shanghai Jiaotong Univ. (Sci.) 2019, 24, 616–621. [Google Scholar] [CrossRef]
- Fu, W.; Tan, J.; Xu, Y.; Wang, K.; Chen, T. Fault diagnosis for rolling bearings based on fine-sorted dispersion entropy and SVM optimized with mutation SCA-PSO. Entropy 2019, 21, 404. [Google Scholar] [CrossRef]
- Rodriguez, N.; Cabrera, G.; Lagos, C.; Cabrera, E. Stationary wavelet singular entropy and kernel extreme learning for bearing multi-fault diagnosis. Entropy 2017, 19, 541. [Google Scholar] [CrossRef]
- He, S.; Chen, J.; Zhou, Z.; Zi, Y.; Wang, Y.; Wang, X. Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound-fault diagnosis. Mech. Syst. Signal Process. 2016, 76–77, 742–758. [Google Scholar] [CrossRef]
- Bafroui, H.H.; Ohadi, A. Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions. Neurocomputing 2014, 133, 437–445. [Google Scholar] [CrossRef]
- Asr, M.Y.; Ettefagh, M.M.; Hassannejad, R.; Razavi, S.N. Diagnosis of combined faults in rotary machinery by non-naive bayesian approach. Mech. Syst. Signal Process. 2017, 85, 56–70. [Google Scholar] [CrossRef]
- Xiao, Y.; Na, K.; Yi, H.; Zhang, G. Misalignment fault diagnosis of DFWT based on IEMD energy entropy and PSO-SVM. Entropy 2017, 19, 6. [Google Scholar] [CrossRef]
- Yu, D.; Yu, Y.; Cheng, J. Application of time–frequency entropy method based on Hilbert–Huang transform to gear fault diagnosis. Measurement 2007, 40, 823–830. [Google Scholar] [CrossRef]
- Mao, G.; Yong, L.; Yi, C.; Yi, Z.; Chen, X. A joint fault diagnosis scheme based on tensor nuclear norm canonical polyadic decomposition and multi-scale permutation entropy for gears. Entropy 2018, 20, 161. [Google Scholar]
- Kuai, M.; Cheng, G.; Pang, Y.; Li, Y. Research of planetary gear fault diagnosis based on permutation entropy of CEEMDAN and ANFIS. Sensors 2018, 18, 782. [Google Scholar] [CrossRef]
- Boškoski, P.; Juričić, Đ. Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures. Mech. Syst. Signal Process. 2012, 31, 369–381. [Google Scholar] [CrossRef]
- Chen, X.; Gang, C.; Yong, L.; Peng, L. Fault diagnosis of planetary gear based on entropy feature fusion of DTCWT and OKFDA. J. Vib. Control 2017, 24, 5044–5061. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Zhang, P.; Wu, F.; Li, X. Gearbox composite fault diagnosis method based on minimum entropy deconvolution and improved dual-tree complex wavelet transform. Entropy 2018, 21, 18. [Google Scholar] [CrossRef]
- Gang, C.; Chen, X.; Li, H.; Peng, L.; Liu, H. Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition. Measurement 2016, 91, 140–154. [Google Scholar]
- Chen, X.; Gang, C.; Li, H.; Min, Z. Diagnosing planetary gear faults using the fuzzy entropy of LMD and ANFIS. J. Mech. Sci. Technol. 2016, 30, 2453–2462. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, N. Fault diagnosis of sun gear based on continuous vibration separation and minimum entropy deconvolution. Measurement 2019, 141, 332–344. [Google Scholar] [CrossRef]
- Tang, G.; Pang, B.; He, Y.; Tian, T. Gearbox fault diagnosis based on hierarchical instantaneous energy density dispersion entropy and dynamic time warping. Entropy 2019, 21, 593. [Google Scholar] [CrossRef]
- Cai, W.; Wang, Z. Application of an improved multipoint optimal minimum entropy deconvolution adjusted for gearbox composite fault diagnosis. Sensors 2018, 18, 2861. [Google Scholar] [CrossRef] [PubMed]
- Rostaghi, M.; Ashory, M.R.; Azami, H. Application of dispersion entropy to status characterization of rotary machines. J. Sound Vib. 2019, 438, 291–308. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, Y. Modeling and fusing the uncertainty of FMEA experts using an entropy-like measure with an application in fault evaluation of aircraft turbine rotor blades. Entropy 2018, 20, 864. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Q.; Wang, L.; Cheng, L.; Zhou, J. Early fault detection method for rotating machinery based on harmonic-assisted multivariate empirical mode decomposition and transfer entropy. Entropy 2018, 20, 873. [Google Scholar] [CrossRef]
- Li, Q.; Ji, X.; Liang, S.Y. Incipient fault feature extraction for rotating machinery based on improved AR-minimum entropy deconvolution combined with variational mode decomposition approach. Entropy 2017, 19, 317. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Z.; Tang, R.; Li, S.; Wu, W. Fault detection and diagnosis for gas turbines based on a kernelized information entropy model. Sci. World J. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Cui, Z.; Shen, J. Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy. Energy 2019, 174, 1100–1109. [Google Scholar] [CrossRef]
- Tang, B.; Tao, S.; Feng, L.; Lei, D. Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine. Renew. Energy 2014, 62, 1–9. [Google Scholar] [CrossRef]
- Xiao, Y.; Yi, H.; Chen, X.; Chen, W. The application of Dual-Tree Complex Wavelet Transform (DTCWT) energy entropy in misalignment fault diagnosis of Doubly-Fed Wind Turbine (DFWT). Entropy 2017, 19, 587. [Google Scholar] [CrossRef]
- Feng, D.L.; Xiao, M.Q.; Liu, Y.X.; Song, H.F.; Yang, Z.; Ze-Wen, H.U. Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks. Front. Inf. Technol. Electron. Eng. 2016, 17, 1287–1304. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, M.; Lin, X.; Fang, J.; Su, S. A fault diagnosis approach for autonomous underwater vehicle thrusters using time-frequency entropy enhancement and boundary constraint–assisted relative gray relational grade. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2019, 1–15. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; He, Z.; Wang, X. Fault diagnosis of demountable disk-drum aero-engine rotor using customized multiwavelet method. Sensors 2015, 15, 26997–27020. [Google Scholar] [CrossRef]
- Fei, C.; Bai, G.; Tang, W.; Ma, S. Quantitative diagnosis of rotor vibration fault using process power spectrum entropy and support vector machine method. Shock Vib. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Fei, C.; Bai, G. Wavelet correlation feature scale entropy and fuzzy support vector machine approach for aeroengine whole-body vibration fault diagnosis. Shock Vib. 2013, 20, 341–349. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Liu, Y. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines. Front. Inf. Technol. Electron. Eng. 2017, 18, 272–286. [Google Scholar] [CrossRef]
- Ye, J. Fault diagnosis of turbine based on fuzzy cross entropy of vague sets. Expert Syst. Appl. 2009, 36, 8103–8106. [Google Scholar] [CrossRef]
- Xiao, L.; Lv, Y.; Fu, G. Fault classification of rotary machinery based on smooth local subspace projection method and permutation entropy. Appl. Sci. 2019, 9, 2102. [Google Scholar] [CrossRef]
- Wang, X.; Si, S.; Wei, Y.; Li, Y. The optimized multi-scale permutation entropy and its application in compound fault diagnosis of rotating machinery. Entropy 2019, 21, 170. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Wei, Y.; Wang, X. A method based on refined composite multi-scale symbolic dynamic entropy and ISVM-BT for rotating machinery fault diagnosis. Neurocomputing 2018, 315, 246–260. [Google Scholar] [CrossRef]
- Fu, W.; Tan, J.; Li, C.; Zou, Z.; Li, Q.; Chen, T. A hybrid fault diagnosis approach for rotating machinery with the fusion of entropy-based feature extraction and SVM optimized by a chaos quantum sine cosine algorithm. Entropy 2018, 20, 626. [Google Scholar] [CrossRef]
- Jiang, Q.; Shen, Y.; Li, H.; Xu, F. New fault recognition method for rotary machinery based on information entropy and a probabilistic neural network. Sensors 2018, 18, 337. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, D.; Zhang, Y.; Peng, Y. Effective sensor selection and data anomaly detection for condition monitoring of aircraft engines. Sensors 2016, 16, 623. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Peng, Y.; Liu, D. FESeR: A data-driven framework to enhance sensor reliability for the system condition monitoring. Microelectron. Reliab. 2016, 64, 681–687. [Google Scholar] [CrossRef]
- Liu, L.; Peng, Y.; Wang, L.; Dong, Y.; Liu, D.; Guo, Q. Improving EGT sensing data anomaly detection of aircraft auxiliary power unit. Chin. J. Aeronaut. 2019. [Google Scholar] [CrossRef]
- Liu, L.; Liu, D.; Guo, Q.; Peng, Y.; Liang, J. SDR: Sensor data recovery for system condition monitoring. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Houston, TX, USA, 14–17 May 2008. [Google Scholar]
- Liu, L.; Pan, D.; Liu, D.; Zhang, Y.; Peng, Y. DRES: Data recovery for condition monitoring to enhance system reliability. Microelectron. Reliab. 2016, 64, 125–129. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Q.; Liu, D.; Peng, Y. Data-driven remaining useful life prediction considering sensor anomaly detection and data recovery. IEEE Access 2019, 7, 58336–58345. [Google Scholar] [CrossRef]
- Saxena, A.; Kai, G.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In Proceedings of the International Conference on Prognostics & Health Management, Denver, CO, USA, 6–9 October 2008. [Google Scholar]
- Xu, J.; Wang, Y.; Lei, X. PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data. IEEE Sens. J. 2014, 14, 1124–1132. [Google Scholar] [CrossRef]
Index | Authors | Methodologies |
---|---|---|
1 | Jiang et al. [50] | singular value decomposition + Shannon entropy |
2 | Kankar et al. [51] | support vector machine - learning vector quantization - self-organizing maps + Shannon entropy |
3 | Hemmati et al. [52] | wavelet packet transform + Shannon entropy |
4 | Reddy et al. [53] | empirical mode decomposition + Shannon entropy |
5 | Leite et al. [54] | Shannon entropy |
Index | Authors | Methodologies |
---|---|---|
1 | Qin et al. [38] | ensemble empirical mode decomposition + energy entropy |
2 | Su et al. [55] | empirical mode decomposition + energy entropy |
3 | Jing et al. [56] | wavelet transform + energy entropy |
4 | Wan et al. [57] | Teager energy entropy ratio of wavelet packet transform |
5 | Yao et al. [58] | wavelet packet energy entropy + local outlier factor algorithm |
6 | Dong et al. [59] | local mean decomposition + energy entropy |
7 | Ao et al. [60] | local characteristic-scale decomposition + energy entropy |
8 | Kankar et al. [61] | energy to Shannon entropy ratio + Shannon entropy |
9 | Pang et al. [62] | characteristic frequency band energy entropy + support vector machine |
10 | Jiang et al. [63] | energy entropy theory + hybrid ensemble auto-encoder |
Index | Authors | Methodologies |
---|---|---|
1 | Li et al. [65] | local mean decomposition + multiscale permutation entropy |
2 | An et al. [64] | variational mode decomposition + permutation entropy |
3 | Liu et al. [66] | variational mode decomposition + multiscale permutation entropy |
4 | Shi et al. [67] | local mean decomposition + permutation entropy |
5 | Xue et al. [68] | ensemble empirical mode decomposition + permutation entropy |
6 | Yao et al. [69] | ensemble empirical mode decomposition + multiscale permutation entropy |
7 | Zhang et al. [70] | singular value decomposition + permutation entropy |
8 | Wang et al. [71] | wavelet packet transform + permutation entropy |
9 | Zhao et al. [72] | wavelet packet decomposition + multiscale permutation entropy |
10 | Fu et al. [73] | variational mode decomposition + permutation entropy |
11 | Yan et al. [74] | improved variational mode decomposition + instantaneous energy distribution-permutation entropy |
12 | Yasir et al. [75] | multi-scale permutation entropy |
13 | Tian et al. [76] | permutation entropy + manifold-based dynamic time warping |
14 | Lv et al. [77] | permutation entropy |
15 | Zheng et al. [78] | support vector machine + multiscale permutation entropy |
16 | Xu et al. [79] | compound multiscale permutation entropy + particle swarm optimization–support vector machine |
17 | Li et al. [80] | improved multiscale permutation + least squares support vector machine |
18 | Huo et al. [81] | permutation entropy + Laplacian score + support vector machine |
19 | Li et al. [82] | permutation entropy + improved support vector machine |
20 | Dong et al. [83] | time-shift multi-scale weighted permutation entropy + gray wolf optimized support vector machine |
21 | Zhou et al. [84] | weighted permutation entropy + improved support vector machine ensemble classifier |
22 | Tiwari et al. [85] | adaptive neuro fuzzy classifier + multiscale permutation entropy |
23 | Yi et al. [86] | tensor-based singular spectrum algorithm + permutation entropy |
24 | Zhang et al. [87] | feature space reconstruction + multiscale permutation entropy |
25 | Zheng et al. [88] | multi-scale weighted permutation entropy + extreme learning machine |
26 | Xue et al. [89] | two-step scheme based on permutation entropy + random forest |
Index | Authors | Methodologies |
---|---|---|
1 | Bokoski et al. [90] | Rényi entropy + Gaussian process model |
2 | Tao et al. [91] | Rényi entropy |
3 | Singh et al. [92] | Rényi entropy + ensemble empirical mode decomposition |
Index | Authors | Methodologies |
---|---|---|
1 | Liang et al. [93] | ensemble empirical mode decomposition + sample entropy |
2 | Zhang et al. [94] | lifting wavelet package transform + sample entropy |
3 | Seera et al. [95] | power spectrum + sample entropy |
4 | Han et al. [96] | local mean decomposition + sample entropy +energy ratio |
5 | Yang et al. [97] | mutual information + sample entropy |
6 | Ni et al. [98] | sample entropy |
Index | Authors | Methodologies |
---|---|---|
1 | Li et al. [99] | variational mode decomposition + approximate entropy |
2 | He et al. [100] | empirical mode decomposition + approximate entropy |
3 | Imaouchen et al. [101] | complete ensemble empirical mode decomposition + approximate entropy |
4 | An et al. [102] | adaptive local iterative filtering + approximate entropy |
5 | Sampio et al. [103] | approximated entropy |
Index | Authors | Methodologies |
---|---|---|
1 | Zheng et al. [104] | local characteristic-scale decomposition + fuzzy entropy |
2 | Zheng [105] | partially ensemble empirical mode decomposition + fuzzy entropy |
3 | Yang et al. [106] | intrinsic timescale decomposition + fuzzy entropy |
4 | Zheng et al. [49] | variable predictive model based class discriminate + multiscale fuzzy entropy |
5 | Zhao et al. [107] | ensemble empirical mode decomposition + multiscale fuzzy entropy |
6 | Li et al. [108] | composite multiscale fuzzy entropy |
7 | Zhu et al. [109] | cross-fuzzy entropy |
8 | Zair et al. [110] | fuzzy entropy of empirical mode decomposition + principal component analysis + self-organizing map neural network |
9 | Deng et al. [111] | integrating empirical wavelet transform + fuzzy entropy |
10 | Zhu et al. [112] | adaptive local iterative filtering + modified fuzzy entropy + support vector machine |
11 | Liu et al. [113] | composite interpolation-based multiscale fuzzy entropy+ Laplacian support vector machine |
12 | Zheng et al. [114] | sigmoid-based refined composite multiscale fuzzy entropy |
13 | Zhu et al. [115] | multiscale fuzzy entropy + Laplacian support vector machine |
Index | Authors | Methodologies | |
---|---|---|---|
1 | Zhu et al. [116] | hierarchical entropy + general distance | |
2 | Pan et al. [117] | spectral entropy | |
3 | An et al. [118] | entropy changes at specific frequencies | |
4 | Song et al. [119] | fractional Brownian motion + minimum entropy deconvolution | |
5 | Han et al. [120] | ensemble empirical mode decomposition + cloud model characteristic entropy | |
6 | Li et al. [121] | ensemble empirical mode decomposition + improved frequency band entropy | |
7 | Zhang et al. [122] | empirical mode decomposition + clear iterative interval threshold + kernel-based fuzzy c-means eigenvalue extraction | |
8 | Fu et al. [123] | fine-sorted dispersion entropy + mutation sine cosine algorithm + particle swarm optimization optimized support vector machine | |
9 | Rodriguez et al. [124] | wavelet packet Fourier entropy + kernel extreme learning |
Index | Authors | Methodologies |
---|---|---|
1 | He et al. [125] | adaptive redundant multiwavelet packet + Shannon entropy |
2 | Bafroui et al. [126] | continuous wavelet transform + Shannon entropy |
Index | Authors | Methodologies |
---|---|---|
1 | Asr et al. [127] | empirical mode decomposition + energy entropy |
2 | Xiao et al. [128] | improved empirical mode decomposition + energy entropy |
3 | Yu et al. [129] | empirical mode decomposition + energy entropy |
Index | Authors | Methodologies |
---|---|---|
1 | Mao et al. [130] | tensor nuclear norm canonical polyadic decomposition + multi-scale permutation entropy |
2 | Kuai et al. [131] | complete ensemble empirical mode decomposition + permutation entropy |
Index | Authors | Methodologies |
---|---|---|
1 | Bokoski and Jurii [132] | wavelet packet transform + Rényi entropy |
2 | Chen et al. [133] | entropy feature fusion of dual-tree complex wavelet transform + optimized kernel Fisher discriminant analysis |
3 | Zhang et al. [134] | minimum entropy deconvolution + improved dual-tree complex wavelet transform |
4 | Cheng et al. [135] | ensemble empirical mode decomposition + sample entropy |
5 | Chen et al. [136] | fuzzy entropy |
6 | Zhang et al. [137] | continuous vibration separation + minimum entropy deconvolution |
7 | Tang et al. [138] | hierarchical Instantaneous energy density dispersion entropy + dynamic time warping |
8 | Cai et al. [139] | combining product function + multipoint optimal minimum entropy deconvolution adjusted |
Index | Authors | Methodologies |
---|---|---|
1 | Rostaghi et al. [140] | dispersion entropy |
2 | Zhou et al. [141] | entropy-like measure |
3 | Wu et al. [142] | harmonic-assisted multivariate empirical mode decomposition + transfer entropy |
4 | Li et al. [143] | improved AR-minimum entropy deconvolution + variational mode decomposition approach |
5 | Wang et al. [144] | Shannon entropy |
Index | Authors | Methodologies |
---|---|---|
1 | Wang et al. [144] | Shannon entropy |
2 | Chen et al. [145] | variational mode decomposition + energy entropy |
3 | Tang et al. [146] | manifold learning + Shannon wavelet support vector machine |
4 | Xiao et al. [147] | dual-tree complex wavelet transform + energy entropy |
5 | Feng et al. [148] | information entropy + deep belief networks |
6 | Yin et al. [149] | time-frequency entropy enhancement + boundary constraint assisted relative gray relational grade |
7 | Chen et al. [150] | ensemble multiwavelet + Shannon entropy |
8 | Fei et al. [151] | support vector machine + process power spectrum entropy |
9 | Fei and Bai [152] | fuzzy support vector machine + wavelet entropy |
10 | Zhang and Liu [153] | ensemble intrinsic time-scale decomposition + energy entropy |
11 | Ye [154] | fuzzy cross-entropy |
12 | Fu et al. [158] | entropy-based feature extraction + support vector machine optimized by a chaos quantum sine cosine algorithm |
13 | Li et al. [157] | multi-scale symbolic dynamic entropy + improved support vector machine based on binary tree |
14 | Wang et al. [156] | optimized multi-scale permutation entropy |
15 | Xiao et al. [155] | smooth local subspace projection method + permutation entropy |
16 | Jiang et al. [159] | Shannon entropy + a probabilistic neural network |
Prediction Method | Sensors Selection Method | MAE (Cycle) | RMSE (Cycle) |
---|---|---|---|
GPR | observing method | 4.05 | 5.03 |
permutation entropy | 11.55 | 14.03 | |
RVM | observing method | 5.36 | 6.80 |
permutation entropy | 11.60 | 12.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhi, Z.; Zhang, H.; Guo, Q.; Peng, Y.; Liu, D. Related Entropy Theories Application in Condition Monitoring of Rotating Machineries. Entropy 2019, 21, 1061. https://doi.org/10.3390/e21111061
Liu L, Zhi Z, Zhang H, Guo Q, Peng Y, Liu D. Related Entropy Theories Application in Condition Monitoring of Rotating Machineries. Entropy. 2019; 21(11):1061. https://doi.org/10.3390/e21111061
Chicago/Turabian StyleLiu, Liansheng, Zhuo Zhi, Hanxing Zhang, Qing Guo, Yu Peng, and Datong Liu. 2019. "Related Entropy Theories Application in Condition Monitoring of Rotating Machineries" Entropy 21, no. 11: 1061. https://doi.org/10.3390/e21111061
APA StyleLiu, L., Zhi, Z., Zhang, H., Guo, Q., Peng, Y., & Liu, D. (2019). Related Entropy Theories Application in Condition Monitoring of Rotating Machineries. Entropy, 21(11), 1061. https://doi.org/10.3390/e21111061