Application of a Novel Adaptive Med Fault Diagnosis Method in Gearboxes
Abstract
:1. Introduction
2. Principle of New Methods and Related Theories
2.1. Principle of MED
2.2. Principle of SSD
2.3. Principles of DFA
2.4. Principles of the Autoregressive (AR) Model
2.5. Principles of New Methods
- (1)
- Initialization FA parameters: Number of fireflies , initial attractiveness , step size factor , initial position of fireflies and maximum iteration times .
- (2)
- The brightness of each firefly is calculated and sorted: The fitness corresponding to each firefly is calculated, and fitness is taken as the brightness of the corresponding firefly and sorted to get the position of the firefly with the greatest brightness.
- (3)
- Judging whether the iteration is over: If the algorithm reaches the maximum iteration number , then the algorithm goes to (4), otherwise it goes to (5).
- (4)
- The position and brightness of the firefly with the greatest brightness are output, and the obtained is used as the optimal scale of the filter.
- (5)
3. Simulated Signal Analysis of a Gearbox Compound Fault
3.1. Construction of Simulated Signals
3.2. Comparison of Decomposition Results of Different Algorithms
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Wang, J.; Cai, W. Application of an Improved Ensemble Local Mean Decomposition Method for Gearbox Composite Fault Diagnosis. Complexity 2019. [Google Scholar] [CrossRef]
- Song, L.; Wang, H.; Chen, P. Step-by-step Fuzzy Diagnosis Method for Equipment Based on Symptom Extraction and Trivalent Logic Fuzzy Diagnosis Theory. IEEE Trans. Fuzzy Syst. 2018, 26, 3467–3478. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, W. Vibration-Based Fault Diagnosis of Commutator Motor. Shock Vib. 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, L.; Du, W. A novel method for intelligent fault diagnosis of bearing based on capsule neural network. Complexity 2019. [Google Scholar] [CrossRef]
- Wang, Z.; He, G.; Du, W.; Zhou, J.; Han, X.; Wang, J.; He, H.; Guo, X.; Wang, J.; Kou, Y. Application of Parameter Optimized Variational Mode Decomposition Method in Fault Diagnosis of Gearbox. IEEE Access 2019, 7, 44871–44882. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Han, B.; An, Z.; Bao, H.; Ji, S. Generalization of Deep Neural Networks for Imbalanced Fault Classification of Machinery Using Generative Adversarial Networks. IEEE Access 2019, 7, 111168–111180. [Google Scholar] [CrossRef]
- Liu, J.; Shao, Y. Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges. J. Sound Vib. 2017, 398, 84–102. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Y.; Han, Z.; Shao, X.; Gao, J.; Huang, K.; Shi, Y.; Tang, J.; Shen, C.; Liu, J. Pole-Zero-Temperature Compensation Circuit Design and Experiment for Dual-mass MEMS Gyroscope Bandwidth Expansion. IEEE/ASME Trans. Mechatron. 2019. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Wang, J. A novel Fault Diagnosis Method of Gearbox Based on Maximum Kurtosis Spectral Entropy Deconvolution. IEEE Access 2019, 7, 29520–29532. [Google Scholar] [CrossRef]
- Wang, Z.; Du, W.; Wang, J. Research and Application of Improved Adaptive MOMEDA Fault Diagnosis Method. Measurement 2019, 140, 63–75. [Google Scholar] [CrossRef]
- Shen, C.; Qi, Y.; Wang, J.; Cai, G.; Zhu, Z. An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder. Eng. Appl. Artif. Intell. 2018, 76, 170–184. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Wang, X. Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine. J. Sound Vib. 2018, 428, 72–86. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The Entropy Algorithm and Its Variants in the Fault Diagnosis of Rotating Machinery: A Review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Shen, C.; Yang, J.; Tang, J.; Liu, J.; Cao, H. Note: Parallel processing algorithm of temperature and noise error for micro-electro-mechanical system gyroscope based on variational mode decomposition and augmented nonlinear differentiator. Rev. Sci. Instrum. 2018, 89, 076107. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Tang, J.; Li, J.; Shen, C.; Jun, L. Attitude Measurement based on Imaging Ray Tracking Model and Orthographic Projection with Iteration Algorithm. ISA Trans. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, S.; Song, L.; Cui, L. A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals. Comput. Ind. 2019, 105, 182–190. [Google Scholar] [CrossRef]
- Shen, C.; Liu, X.; Cao, H.; Zhou, Y. Brain-like Navigation Scheme based on MEMS-INS and Place Recognition. Appl. Sci. 2019, 9, 1708. [Google Scholar] [CrossRef]
- Wiggins, R.A. Minimum entropy deconvolution. Geophys. Prospect. Pet. 1980, 16, 21–35. [Google Scholar] [CrossRef]
- McDonald, G.L.; Zhao, Q.; Zuo, M. Maximum correlated Kurtosis deconvolution and Application on gear tooth chip fault detection. Mech. Syst. Signal Process. 2012, 33, 237. [Google Scholar] [CrossRef]
- Endo, H.; Randall, R.B. Application of a Minimum Entropy Deconvolution Filter to Enhance Autoregressive Model Based Gear Tooth Fault Detection Technique. Mech. Syst. Signal Process. 2007, 21, 906–919. [Google Scholar] [CrossRef]
- Sawalhi, N.; Randall, R.B.; Endo, H. The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined with Spectral Kurtosis. Mech. Syst. Signal Process. 2007, 21, 2616–2633. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Zhang, J. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution. J. Sound Vib. 2017, 401, 139–151. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Liu, S. Spectral blind deconvolution with differential entropy regularization for infrared spectrum. Infrared Phys. Technol. 2015, 71, 481–491. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Song, L.; Ren, B.; Cui, L. A Novel Feature Enhancement Method based on Improved Constraint Model of Online Dictionary Learning. IEEE Access 2019, 7, 17599–17607. [Google Scholar] [CrossRef]
- Gao, Y.; Villecco, F.; Li, M.; Song, W. Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy 2017, 19, 176. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Song, L.; Cui, L.; Wang, H. A three-dimensional geometric features-based SCA algorithm for compound faults diagnosis. Measurement 2019, 134, 480–491. [Google Scholar] [CrossRef]
- Liu, J.; Shao, Y. An improved analytical model for a lubricated roller bearing including a localized defect with different edge shapes. J. Vib. Control 2018, 24, 3894–3907. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Y.; Shen, C.; Liu, Y.; Wang, X. Temperature Energy Influence Compensation for MEMS Vibration Gyroscope Based on RBF NN-GA-KF Method. Shock Vib. 2018, 2018. [Google Scholar] [CrossRef]
- Cao, H.; Liu, Y.; Zhang, Y. Design and Experiment of Dual-mass MEMS Gyroscope Sense Closed System Based on Bipole Compensation Method. IEEE Access 2019. [Google Scholar] [CrossRef]
- Zheng, J.; Tu, D.; Pan, H. A refined composite multivariate multiscale fuzzy entropy and Laplacian score-based fault diagnosis method for rolling bearings. Entropy 2017, 19, 585. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zheng, L. Research of novel bearing fault diagnosis method based on improved krill herd algorithm and kernel Extreme Learning Machine. Complexity 2019. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2011, 1, 1–41. [Google Scholar] [CrossRef]
- Guo, X.; Shen, C.; Chen, L. Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for Fault Diagnosis in Rotating Machinery. Appl. Sci. 2016, 7, 41. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, J.; Tang, H.; Zhong, Y.; Liu, X. Minimum entropy deconvolution based on simulation determined band pass filter to detect faults in bearings of axial piston pumps. ISA Trans. 2018, 88, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Shen, C.; Shi, J.; Zhu, Z. Initial center frequency-guided VMD for fault diagnosis of rotating machines. J. Sound Vib. 2018, 435, 36–55. [Google Scholar] [CrossRef]
- Cao, H.; Li, H.; Shao, X.; Liu, Z.; Kou, Z.; Shan, Y.; Shi, Y.; Shen, C.; Liu, J. Sensing Mode Coupling Analysis for Dual-mass MEMS Gyroscope and Bandwidth Expansion within Wide-Temperature Range. Mech. Syst. Signal Process. 2018, 98, 448–464. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Li, F.; Sun, B.; Xue, W. An Online Damage Identification Approach for NC Machine Tools Based on Data Fusion Using Vibration Signals. J. Vib. Control 2015, 21, 2925–2936. [Google Scholar]
- Guo, X.T.; Tang, J.; Li, J.; Wang, C.G.; Shen, C.; Liu, J. Determine turntable coordinate system considering its non-orthogonality, Review of Scientific Instruments. Rev. Sci. Instrum. 2019, 90, 033704. [Google Scholar] [CrossRef] [PubMed]
- Pietro, B.; Joël, M.H.K.; Olivier, M.; Ralf, L.M.P. Singular spectrum decomposition: A new method for time series decomposition. Adv. Adapt. Data Anal. 2014, 6, 45–50. [Google Scholar]
- Peng, C.-K.; Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H.E. Long-range correlations in nucleotide sequences. Nature 1992, 356, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wong, A.K. Autoregressive model-based gear fault diagnosis. J. Vib. Acoust. 2002, 124, 172–179. [Google Scholar] [CrossRef]
Parameter | AR Order | Iteration Times M | |||
---|---|---|---|---|---|
Numerical values | 1/40 | 1 | 0.1 | 50 | 50 |
Parameter | Outer Race Diameter | Bearing Mean Diameter | Number of Balls | Load Rating (Static) |
Numerical values | 39.80 mm | 34.55 mm | 8 | 6.65 KN |
Parameter | Inner Race Diameter | Ball Diameter | Contact Angle | Load Rating (Dynamic) |
Numerical values | 29.30 mm | 7.92 mm | 0° | 12.82 KN |
Original Signal | MED | New Method | |
---|---|---|---|
Envelope spectral entropy | 7.1557 | 6.9725 | 6.6656 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, W.; Guo, X.; Han, X.; Wang, J.; Zhou, J.; Wang, Z.; Yao, X.; Shao, Y.; Wang, G. Application of a Novel Adaptive Med Fault Diagnosis Method in Gearboxes. Entropy 2019, 21, 1106. https://doi.org/10.3390/e21111106
Du W, Guo X, Han X, Wang J, Zhou J, Wang Z, Yao X, Shao Y, Wang G. Application of a Novel Adaptive Med Fault Diagnosis Method in Gearboxes. Entropy. 2019; 21(11):1106. https://doi.org/10.3390/e21111106
Chicago/Turabian StyleDu, Wenhua, Xiaoming Guo, Xiaofeng Han, Junyuan Wang, Jie Zhou, Zhijian Wang, Xingyan Yao, Yanjun Shao, and Guanjun Wang. 2019. "Application of a Novel Adaptive Med Fault Diagnosis Method in Gearboxes" Entropy 21, no. 11: 1106. https://doi.org/10.3390/e21111106
APA StyleDu, W., Guo, X., Han, X., Wang, J., Zhou, J., Wang, Z., Yao, X., Shao, Y., & Wang, G. (2019). Application of a Novel Adaptive Med Fault Diagnosis Method in Gearboxes. Entropy, 21(11), 1106. https://doi.org/10.3390/e21111106