A Survey of the Concept of Disturbance in Quantum Mechanics
Abstract
:1. Introduction
2. Definitions
2.1. Uncertainty Principle
- Preparation Uncertainty Principle: It is impossible to prepare states whose two incompatible properties, for example position x and momentum p, are well determined at the same time.
- Uncertainty Principle of Simultaneous measurements: It is impossible to measure two incompatible properties of a state at the same time.
- Noise–Disturbance Uncertainty Principle: It is impossible to measure a property of a state without disturbing another property of the state.
2.2. The Bell–Kochen–Specker Theorem
2.3. Fidelity
2.4. Measurement and Entropy
3. Disturbance in the Information–Disturbance Trade-off (IDT)
3.1. Informational IDT Approaches
3.2. Estimation IDT Approaches
4. Disturbance in the Noise–Disturbance Trade-off (NDT)
4.1. Disturbance in the Noise–Disturbance Trade-off (NDT)
“(...)Actually an estimate of the interference caused by an earlier A-measurement on the uncertainty in the outcome of a later B-measurement can be had from the following inequality:”[5]
4.2. Precision–Disturbance Trade-off
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
QM | Quantum Mechanics |
BKST | Bell–Kochen–Specker Theorem |
IT | Information Theory |
IDT | Information–Disturbance Tradeoff |
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
TLA | Three Letter Acronym |
LD | Linear Dichroism |
References
- Bennett, C.H.; Brassard, G.; David Mermin, N. Quantum Cryptography without Bell’s Theorem. Phys. Rev. Lett. 1992, 68, 558. [Google Scholar] [CrossRef] [PubMed]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391. [Google Scholar] [CrossRef]
- Born, M. The foundation of quantum statistics. Nuovo Cimento 1949, 6, 161. [Google Scholar] [CrossRef]
- Ballentine, L.E. The Statistical Interpretation of Quantum Mechanics. Rev. Mod. Phys. 1970, 42, 358–381. [Google Scholar] [CrossRef]
- Srinivas, M.D. Entropic formulation of uncertainty relations for successive measurements. Pramana J. Phys. 1985, 24, 673–684. [Google Scholar] [CrossRef]
- Wigner, E.P. The Problem of Measurement. Am. J. Phys. 1963, 31, 6. [Google Scholar] [CrossRef]
- Fuchs, C.A. Information Gain vs. State Disturbance in Quantum Theory. Fortschr. Phys. 2008, 46, 535–561. [Google Scholar] [CrossRef]
- Bina, M.; Mandarino, A.; Olivares, S.; Paris, M.G.A. Drawbacks of the use of fidelity to assess quantum resources. Phys. Rev. A 2014, 89, 012305. [Google Scholar] [CrossRef] [Green Version]
- Kochen, S.; Specker, E.P. The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. (In German) [Google Scholar] [CrossRef]
- Busch, P.; Heinonen, T.; Lahti, P. Heisenberg’s uncertainty principle. Phys. Rep. 2007, 452, 155–176. [Google Scholar] [CrossRef]
- Buscemi, F.; Horodecki, M. Towards a Unified Approach to Information–Disturbance Tradeoffs in Quantum Measurements. Open Syst. Inf. Dyn. 2009, 16, 29–48. [Google Scholar] [CrossRef]
- Dressel, J.; Nori, F. Certainty in Heisenberg’s uncertainty principle: Revisiting definitions for estimation errors and disturbance. Phys. Rev. A 2014, 89, 022106. [Google Scholar] [CrossRef]
- Buscemi, F.; Hall, M.J.W.; Ozawa, M.; Wilde, M.M. Noise and Disturbance in Quantum Measurements: An Information-Theoretic Approach. Phys Rev. Lett. 2014, 112, 050401. [Google Scholar] [CrossRef] [PubMed]
- Busch, P.; Lahti, P.; Werner, R.F. Colloquium: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 2014, 86, 1261–1281. [Google Scholar] [CrossRef]
- Hilgevoord, J.; Uffink, J.B.M. More certainty about the uncertainty principle. Eur. J. Phys. 1985, 6, 165–170. [Google Scholar] [CrossRef]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majerník, V.; Richterek, L. Entropic Uncertainty Relations. Eur. J. Phys. 1997, 18, 79–89. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic Uncertainty Relations—A Survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- D’Ariano, G.M. On the Heisenberg principle, namely on the information-disturbance trade-off in a quantum measurement. Fortschr. Phys. 2003, 51. [Google Scholar] [CrossRef]
- Benítez Rodríguez, E.; Arévalo Aguilar, L.M. Disturbance-Disturbance uncertainty relation: The statistical distinguishability of quantum states determines disturbance. Sci. Rep. 2018, 8, 4010. [Google Scholar] [CrossRef] [PubMed]
- Mermin, N.D. Simple unified form for the major no-hidden-variable theorems. Phys. Rev. Lett. 1990, 65, 3373. [Google Scholar] [CrossRef] [PubMed]
- Peres, A. Incompatible results of quantum measurement. Phys. Lett. A 1990, 151, 107. [Google Scholar] [CrossRef]
- Uhlmann, A. The “Transition Probability” in the State Space of A-Algebra. Rep. Math. Phys. 1976, 9, 273–279. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for Mixed Quantum States. J. Mod. Opt. 1994, 41, 2315–2323. [Google Scholar] [CrossRef]
- Miszczak, J.A.; Puchala, Z.; Horodecki, P.; Uhlmann, A.; Zyczkowski, K. Su- and Super-Fidelity as bounds for quantum Fidelity. Quantum Inf. Comput. 2009, 9, 103. [Google Scholar]
- Mandarino, A.; Bina, M.; Olivares, S.; Paris, M.G.A. About the use of fidelity in continuos variable systems. Int. J. Quantum Inf. 2014, 12, 1461015. [Google Scholar] [CrossRef]
- Mandarino, A.; Bina, M.; Porto, C.; Cialdi, S.; Olivares, S.; Paris, M.G.A. Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete and continuous-variable systems. Phys. Rev. A 2016, 93, 062118. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Upper bound on the relative energy difference of pure and mixed states with a fixed fidelity. J. Phys. A 2012, 45, 032002. [Google Scholar] [CrossRef]
- Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49, 1858–1860. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hall, M.J.W. Information exclusion principle for complementary observables. Phys. Rev. Lett. 1995, 74, 3307–3311. [Google Scholar] [CrossRef] [PubMed]
- Shitara, T.; Kuramochi, Y.; Ueda, M. Trade-off relation between information and disturbance in quantum measurement. Phys. Rev. A 2016, 93, 032134. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Peres, A. Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. Phys. Rev. A 1996, 53, 2038–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnum, H. Information-disturbance tradeoff in quantum measurement on the uniform ensemble and on the mutually unbiased bases. arXiv, 2002; arXiv:quant-ph/0205155. [Google Scholar]
- Martens, H.; de Muynck, W.M. Disturbance, conservation laws and the uncertainty principle. J. Phys. A Math. Gen. 1992, 25, 4887. [Google Scholar] [CrossRef]
- Maccone, L. Entropic information–disturbance trade-off. EPL 2007, 77, 40002. [Google Scholar] [CrossRef]
- Schumacher, B.; Nielsen, M.A. Quantum data processing and error correction. Phys. Rev. A 1996, 54, 2629–2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D 1987, 35, 3070–3075. [Google Scholar] [CrossRef]
- Buscemi, F.; Hayashi, M.; Horodecki, M. Global Information Balance in Quantum Measurements. Phys. Rev. Lett. 2008, 100, 210504. [Google Scholar] [CrossRef] [Green Version]
- Barnum, H. Information-disturbance trade-off in quantum measurement on the uniform ensemble. In Proceedings of the 2001 IEEE International Symposium on Information Theory, Washington, DC, USA, 29 June 2001. [Google Scholar] [CrossRef]
- Schumacher, B. Sending entanglement through noisy quantum channels. Phys. Rev. A 1996, 54, 2614–2628. [Google Scholar] [CrossRef] [Green Version]
- Banaszek, K. Fidelity Balance in Quantum Operations. Phys. Rev. Lett. 2001, 86, 1366–1369. [Google Scholar] [CrossRef] [Green Version]
- Sacchi, M.F. Information–Disturbance Tradeoff in Estimating a Maximally Entangled State. Phys. Rev. Lett. 2006, 96, 220502. [Google Scholar] [CrossRef] [PubMed]
- Genoni, M.G.; Paris, M.G.A. Information–disturbance trade-off in continuous-variable Gaussian systems. Phys. Rev. A 2006, 74, 012301. [Google Scholar] [CrossRef]
- Banaszek, K.; Devetak, I. Fidelity trade-off for finite ensembles of identically prepared qubits. Phys. Rev. A 2001, 64, 052307. [Google Scholar] [CrossRef]
- Olivares, S.; Paris, M.G.A. Improving information/disturbance and estimation/distortion trade-off with non-universal protocolos. J. Phys. A 2007, 40, 7945–7954. [Google Scholar] [CrossRef]
- Sparaciari, C.; Paris, M.G.A. Probing qubit by qubit: Properties of the POVM and the information/ disturbance trade-off. Int. J. Quantum Inf. 2014, 12, 1461012. [Google Scholar] [CrossRef]
- Sun, L.-L.; Song, Y.-S.; Qiao, C.-F.; Yu, S.; Chen, Z.-B. Uncertainty relation based on unbiased parameter estimation. Phys. Rev. A 2017, 95, 022112. [Google Scholar] [CrossRef]
- Heinosaari, T.; Miyadera, T. Universality of sequential quantum measurements. Phys. Rev. A 2015, 91, 022110. [Google Scholar] [CrossRef]
- Seveso, L.; Paris, M.G.A. Trade-off between information and disturbance in qubit thermometry. Phys. Rev. A 2018, 97, 032129. [Google Scholar] [CrossRef] [Green Version]
- Hashagen, A.K.; Wolf, M.M. Universality and Optimality in the Information–Disturbance Tradeoff. Ann. Henri Poincaré 2018. [Google Scholar] [CrossRef]
- Srinivas, M.D. Optimal entropic uncertainty relation for successive measurement in quantum information theory. Pramana 2003, 60, 1137–1152. [Google Scholar] [CrossRef]
- Back, K.; Farrow, T.; Son, W. Optimized entropic uncertainty relation for successive projective measurements. Phys. Rev. A 2014, 89, 032108. [Google Scholar] [CrossRef]
- Back, K.; Son, W. Entropic Uncertainty relations for successive generalized measurements. Mathematics 2016, 4, 41. [Google Scholar] [CrossRef]
- Arthurs, E.; Goodman, M.S. Quantum Correlations: A Generalized Heisenberg Uncertainty Relation. Phys. Rev. Lett. 1988, 60, 2447–2449. [Google Scholar] [CrossRef] [PubMed]
- Appleby, D.M. Concept of Experimental Accuracy and Simultaneous Measurements of Position and Momentum. Int. J. Theor. Phys. 1998, 37, 1491. [Google Scholar] [CrossRef]
- Arthurs, E.; Kelly, J.L., Jr. On the Simultaneous Measurement of a Pair of Conjugate Observables. Bell Syst. Tech. J. 1965, 44, 725–729. [Google Scholar] [CrossRef]
- Ozawa, M. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 2003, 67, 042105. [Google Scholar] [CrossRef]
- Schrödinger, E. Probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 1936, 32, 446–452. [Google Scholar] [CrossRef]
- Paris, M.G.A. The modern tools of quantum mechanics. Eur. Phys. J. Spec. Top. 2012, 203, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Branciard, C. Error-trade-off and error-disturbance relations for incompatible quantum measurements. Proc. Natl. Acad. Sci. USA 2013, 110, 6742–6747. [Google Scholar] [CrossRef]
- Kaneda, F.; Baek, S.; Ozawa, M.; Edamatsu, K. Experimental Test of Error-Disturbance Uncertainty Relations by Weak Measurement. Phys. Rev. Lett. 2014, 112, 020402. [Google Scholar] [CrossRef]
- Lu, X.; Yu, S.; Fujikawa, K.; Oh, C.H. Improved error-tradeoff and error-disturbance relations in terms of measurement error components. Phys. Rev. A 2014, 90, 042113. [Google Scholar] [CrossRef]
- Mandayam, P.; Srinivas, M.D. Measures of disturbance and incompatibility for quantum measurements. Phys. Rev. A 2014, 89, 062112. [Google Scholar] [CrossRef]
- Mandayam, P.; Srinivas, M.D. Disturbance trade-off principle for quantum measurements. Phys. Rev. A 2014, 90, 062128. [Google Scholar] [CrossRef]
- Coles, P.; Furrer, F. State-Dependent Approach to Entropic Measurement-Disturbance Relations. Phys. Lett. A 2014, 379, 105–112. [Google Scholar] [CrossRef]
- Sulyok, G.; Sponar, S.; Demirel, B.; Buscemi, F.; Hall, M.J.W.; Ozawa, M.; Hasegawa, Y. Experimental Test of Entropic Noise–Disturbance Uncertainty Relations for Spin-1/2 Measurements. Phys. Rev. Lett. 2015, 115, 030401. [Google Scholar] [CrossRef] [PubMed]
- Iinuma, M.; Suzuki, Y.; Nii, T.; Kinoshita, R.; Hofmann, H.F. Experimental evaluation of non classical correlations between measurement outcomes and target observables in quantum measurement. Phys. Rev. A 2016, 93, 032104. [Google Scholar] [CrossRef]
- Iinuma, M.; Nakano, M.; Hofmann, H.F.; Suzuki, Y. Experimental evaluation of the nonclassical relation between measurement errors using entangled photon pairs as a probe. Phys. Rev. A 2018, 98, 062109. [Google Scholar] [CrossRef]
- Werner, R.F. The uncertainty relation for joint measurement of position and momentum. Quantum Inf. Comput. 2004, 4, 546–562. [Google Scholar] [CrossRef]
- Wooters, W.K. Statistical distance and Hilbert space. Phys. Rev. D 1981, 23, 352–362. [Google Scholar] [CrossRef]
- Hofmann, H.F. Uncertainty characteristics of generalized quantum measurement. Phys. Rev. A 2003, 67, 022106. [Google Scholar] [CrossRef]
- Hofmann, H.F.; Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 2003, 68, 032103. [Google Scholar] [CrossRef]
- Hofmann, H.F. Sequential measurement of non-commuting observables with quantum controlled interactions. New J. Phys 2014, 16, 063056. [Google Scholar] [CrossRef]
- Suzuki, Y.; Iinuma, M.; Hofmann, H.F. Observation of non-classical correlations in sequential measurements of photon polarization. New J. Phys 2016, 18, 103045. [Google Scholar] [CrossRef] [Green Version]
- Nii, T.; Iinuma, M.; Hofmann, H.F. On the relation between measurement outcomes and physical properties. Quantum Stud. Math. Found. 2018, 5, 229–243. [Google Scholar] [CrossRef]
- Busch, P.; Lathi, P.; Werner, R.F. Proff of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 2013, 111, 160405. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benítez Rodríguez, E.; Arévalo Aguilar, L.M. A Survey of the Concept of Disturbance in Quantum Mechanics. Entropy 2019, 21, 142. https://doi.org/10.3390/e21020142
Benítez Rodríguez E, Arévalo Aguilar LM. A Survey of the Concept of Disturbance in Quantum Mechanics. Entropy. 2019; 21(2):142. https://doi.org/10.3390/e21020142
Chicago/Turabian StyleBenítez Rodríguez, Ernesto, and Luis Manuel Arévalo Aguilar. 2019. "A Survey of the Concept of Disturbance in Quantum Mechanics" Entropy 21, no. 2: 142. https://doi.org/10.3390/e21020142
APA StyleBenítez Rodríguez, E., & Arévalo Aguilar, L. M. (2019). A Survey of the Concept of Disturbance in Quantum Mechanics. Entropy, 21(2), 142. https://doi.org/10.3390/e21020142