Fluctuation Theorem of Information Exchange within an Ensemble of Paths Conditioned on Correlated-Microstates
Abstract
:1. Introduction
2. Conditioned Nonequilibrium Work Relations and Sagawa–Ueda Fluctuation Theorem
3. Results
3.1. Theoretical Framework
3.2. Proof of Fluctuation Theorem of Information Exchange Conditioned on a Correlated-Microstates
3.3. Corollary
4. Examples
4.1. A Simple One
4.2. A “Tape-Driven” Biochemical Machine
5. Conclusions
Funding
Conflicts of Interest
References
- Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690–2693. [Google Scholar] [CrossRef]
- Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 1999, 60, 2721–2726. [Google Scholar] [CrossRef] [Green Version]
- Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 2005, 95, 040602. [Google Scholar] [CrossRef]
- Hatano, T.; Sasa, S.I. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 2001, 86, 3463–3466. [Google Scholar] [CrossRef]
- Hummer, G.; Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. USA 2001, 98, 3658–3661. [Google Scholar] [PubMed] [Green Version]
- Liphardt, J.; Onoa, B.; Smith, S.B.; Tinoco, I.; Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 2001, 292, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Liphardt, J.; Dumont, S.; Smith, S.; Tinoco, I., Jr.; Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 2002, 296, 1832–1835. [Google Scholar] [CrossRef]
- Trepagnier, E.H.; Jarzynski, C.; Ritort, F.; Crooks, G.E.; Bustamante, C.J.; Liphardt, J. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Natl. Acad. Sci. USA 2004, 101, 15038–15041. [Google Scholar] [CrossRef] [PubMed]
- Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S.B.; Tinoco, I.; Bustamante, C. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 2005, 437, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemany, A.; Mossa, A.; Junier, I.; Ritort, F. Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nat. Phys. 2012, 8, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Holubec, V.; Ryabov, A. Cycling Tames Power Fluctuations near Optimum Efficiency. Phys. Rev. Lett. 2018, 121, 120601. [Google Scholar] [CrossRef]
- Šiler, M.; Ornigotti, L.; Brzobohatý, O.; Jákl, P.; Ryabov, A.; Holubec, V.; Zemánek, P.; Filip, R. Diffusing up the Hill: Dynamics and Equipartition in Highly Unstable Systems. Phys. Rev. Lett. 2018, 121, 230601. [Google Scholar] [CrossRef] [PubMed]
- Ciliberto, S. Experiments in Stochastic Thermodynamics: Short History and Perspectives. Phys. Rev. X 2017, 7, 021051. [Google Scholar] [CrossRef]
- Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Quantum and Information Thermodynamics: A Unifying Framework Based on Repeated Interactions. Phys. Rev. X 2017, 7, 021003. [Google Scholar] [CrossRef]
- Demirel, Y. Information in biological systems and the fluctuation theorem. Entropy 2014, 16, 1931–1948. [Google Scholar] [CrossRef]
- Demirel, Y. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Lloyd, S. Use of mutual information to decrease entropy: Implications for the second law of thermodynamics. Phys. Rev. A 1989, 39, 5378–5386. [Google Scholar] [CrossRef]
- Cao, F.J.; Feito, M. Thermodynamics of feedback controlled systems. Phys. Rev. E 2009, 79, 041118. [Google Scholar] [CrossRef]
- Gaspard, P. Multivariate fluctuation relations for currents. New J. Phys. 2013, 15, 115014. [Google Scholar] [CrossRef] [Green Version]
- Barato, A.C.; Seifert, U. Unifying Three Perspectives on Information Processing in Stochastic Thermodynamics. Phys. Rev. Lett. 2014, 112, 090601. [Google Scholar] [CrossRef] [Green Version]
- Barato, A.C.; Seifert, U. Stochastic thermodynamics with information reservoirs. Phys. Rev. E 2014, 90, 042150. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, J.M.; Esposito, M. Thermodynamics with continuous information flow. Phys. Rev. X 2014, 4, 031015. [Google Scholar] [CrossRef]
- Rosinberg, M.L.; Horowitz, J.M. Continuous information flow fluctuations. EPL Europhys. Lett. 2016, 116, 10007. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, T.; Ueda, M. Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 2010, 104, 090602. [Google Scholar] [CrossRef]
- Sagawa, T.; Ueda, M. Fluctuation theorem with information exchange: Role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 2012, 109, 180602. [Google Scholar] [CrossRef] [PubMed]
- Jinwoo, L. Fluctuation Theorem of Information Exchange between Subsystems that Co-Evolve in Time. Symmetry 2019, 11, 433. [Google Scholar] [CrossRef]
- Jinwoo, L.; Tanaka, H. Local non-equilibrium thermodynamics. Sci. Rep. 2015, 5, 7832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinwoo, L.; Tanaka, H. Trajectory-ensemble-based nonequilibrium thermodynamics. arXiv 2014, arXiv:1403.1662v1. [Google Scholar]
- Jarzynski, C. Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Codens. Matter Phys. 2011, 2, 329–351. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [Green Version]
- Spinney, R.; Ford, I. Fluctuation Relations: A Pedagogical Overview. In Nonequilibrium Statistical Physics of Small Systems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 3–56. [Google Scholar] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Ponmurugan, M. Generalized detailed fluctuation theorem under nonequilibrium feedback control. Phys. Rev. E 2010, 82, 031129. [Google Scholar] [CrossRef]
- Horowitz, J.M.; Vaikuntanathan, S. Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Phys. Rev. E 2010, 82, 061120. [Google Scholar] [CrossRef]
- Kurchan, J. Fluctuation theorem for stochastic dynamics. J. Phys. A Math. Gen. 1998, 31, 3719. [Google Scholar] [CrossRef]
- Maes, C. The fluctuation theorem as a Gibbs property. J. Stat. Phys. 1999, 95, 367–392. [Google Scholar] [CrossRef]
- Jarzynski, C. Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 2000, 98, 77–102. [Google Scholar] [CrossRef]
- Goldstein, H.; Poole, C.; Safko, J. Classical Mechanics, 3rd ed.; Pearson: London, UK, 2001. [Google Scholar]
- Parrondo, J.M.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Kawai, R.; Parrondo, J.M.R.; den Broeck, C.V. Dissipation: The phase-space perspective. Phys. Rev. Lett. 2007, 98, 080602. [Google Scholar] [CrossRef] [PubMed]
- Takara, K.; Hasegawa, H.H.; Driebe, D.J. Generalization of the second law for a transition between nonequilibrium states. Phys. Lett. A 2010, 375, 88–92. [Google Scholar] [CrossRef]
- Hasegawa, H.H.; Ishikawa, J.; Takara, K.; Driebe, D.J. Generalization of the second law for a nonequilibrium initial state. Phys. Lett. A 2010, 374, 1001–1004. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. Europhys. Lett. 2011, 95, 40004. [Google Scholar] [CrossRef] [Green Version]
- McGrath, T.; Jones, N.S.; ten Wolde, P.R.; Ouldridge, T.E. Biochemical Machines for the Interconversion of Mutual Information and Work. Phys. Rev. Lett. 2017, 118, 028101. [Google Scholar] [CrossRef]
- Becker, N.B.; Mugler, A.; ten Wolde, P.R. Optimal Prediction by Cellular Signaling Networks. Phys. Rev. Lett. 2015, 115, 258103. [Google Scholar] [CrossRef] [PubMed]
- Ouldridge, T.E.; Govern, C.C.; ten Wolde, P.R. Thermodynamics of Computational Copying in Biochemical Systems. Phys. Rev. X 2017, 7, 021004. [Google Scholar] [CrossRef]
- Tsai, C.J.; Nussinov, R. A unified view of “how allostery works”. PLoS Comput. Biol. 2014, 10, e1003394. [Google Scholar] [CrossRef]
- Cuendet, M.A.; Weinstein, H.; LeVine, M.V. The allostery landscape: Quantifying thermodynamic couplings in biomolecular systems. J. Chem. Theory Comput. 2016, 12, 5758–5767. [Google Scholar] [CrossRef] [PubMed]
0 | 1 | 2 | |
---|---|---|---|
0 | 1/6 | 1/9 | 1/18 |
1 | 1/18 | 1/6 | 1/9 |
2 | 1/9 | 1/18 | 1/6 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jinwoo, L. Fluctuation Theorem of Information Exchange within an Ensemble of Paths Conditioned on Correlated-Microstates. Entropy 2019, 21, 477. https://doi.org/10.3390/e21050477
Jinwoo L. Fluctuation Theorem of Information Exchange within an Ensemble of Paths Conditioned on Correlated-Microstates. Entropy. 2019; 21(5):477. https://doi.org/10.3390/e21050477
Chicago/Turabian StyleJinwoo, Lee. 2019. "Fluctuation Theorem of Information Exchange within an Ensemble of Paths Conditioned on Correlated-Microstates" Entropy 21, no. 5: 477. https://doi.org/10.3390/e21050477
APA StyleJinwoo, L. (2019). Fluctuation Theorem of Information Exchange within an Ensemble of Paths Conditioned on Correlated-Microstates. Entropy, 21(5), 477. https://doi.org/10.3390/e21050477