Quantum Probes for Ohmic Environments at Thermal Equilibrium
Abstract
:1. Introduction
2. The Model
Quantum Parameter Estimation
3. Quantum Probes for Ohmic Environments at Thermal Equlibrium
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Palma, M.G.; Suominen, K.-A.; Ekert, A.K. Quantum computers and dissipation. Proc. R. Soc. Lond. A 1996, 452, 567–584. [Google Scholar] [Green Version]
- Benedetti, C.; Sehdaran, F.S.; Zandi, M.H.; Paris, M.G.A. Quantum probes for the cutoff frequency of Ohmic environments. Phys. Rev. A 2018, 97, 012126. [Google Scholar] [CrossRef] [Green Version]
- Bina, M.; Grasselli, F.; Paris, M.G.A. Continuous-variable quantum probes for structured environments. Phys. Rev. A 2018, 97, 012125. [Google Scholar] [CrossRef] [Green Version]
- Elliott, T.J.; Johnson, T.H. Nondestructive probing of means, variances, and correlations of ultracold-atomic-system densities via qubit impurities. Phys. Rev. A 2016, 93, 043612. [Google Scholar] [CrossRef]
- Streif, M.; Buchleitner, A.; Jaksch, D.; Mur-Petit, J. Measuring correlations of cold-atom systems using multiple quantum probes. Phys. Rev. A 2016, 94, 053634. [Google Scholar] [CrossRef] [Green Version]
- Troiani, F.; Paris, M.G.A. Probing molecular spin clusters by local measurements. Phys. Rev. B 2016, 94, 115422. [Google Scholar] [CrossRef] [Green Version]
- Cosco, F.; Borrelli, M.; Plastina, F.; Maniscalco, S. Momentum-resolved and correlation spectroscopy using quantum probes. Phys. Rev. A 2017, 95, 053620. [Google Scholar] [CrossRef]
- Benedetti, C.; Buscemi, F.; Bordone, P.; Paris, M.G.A. Quantum probes for the spectral properties of a classical environment. Phys. Rev. A 2014, 89, 032114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Peng, X.; Rajendran, N.; Suter, D. Detection of Quantum Critical Points by a Probe Qubit. Phys. Rev. Lett. 2008, 100, 100501. [Google Scholar] [CrossRef] [PubMed]
- Berkley, A.J.; Przybysz, A.J.; Lanting, T.; Harris, R.; Dickson, N.; Altomare, F.; Amin, M.H.; Bunyk, P.; Enderud, C.; Hoskinson, E.; et al. Tunneling spectroscopy using a probe qubit. Phys. Rev. B 2013, 87, 020502(R). [Google Scholar] [CrossRef]
- Lolli, J.; Baksic, A.; Nagy, D.; Manucharyan, V.E.; Ciuti, C. Ancillary Qubit Spectroscopy of Vacua in Cavity and Circuit Quantum Electrodynamics. Phys. Rev. Lett. 2015, 114, 183601. [Google Scholar] [CrossRef] [PubMed]
- Paavola, J.; Piilo, J.; Suominen, K.-A.; Maniscalco, S. Environment-dependent dissipation in quantum Brownian motion. Phys. Rev. A 2009, 79, 052120. [Google Scholar] [CrossRef]
- Martinazzo, R.; Hughes, K.H.; Martelli, F.; Burghard, I. Effective spectral densities for system-environment dynamics at conical inter-sections: S2-S1 conical intersection in pyrazine. Chem. Phys. 2010, 377, 21. [Google Scholar] [CrossRef]
- Myatt, C.J.; King, B.E.; Turchette, Q.A.; Sackett, C.A.; Kielpinski, D.; Itano, W.M.; Monroe, C.; Wineland, D.J. Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 2000, 403, 269. [Google Scholar] [CrossRef]
- Piilo, J.; Maniscalco, S. Driven harmonic oscillator as a quantum simulator for open systems. Phys. Rev. A 2006, 74, 032303. [Google Scholar] [CrossRef]
- Tamascelli, D.; Smirne, A.; Huelga, S.F.; Plenio, M.B. Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems. Phys. Rev. Lett. 2018, 120, 030402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemmer, A.; Cormick, C.; Tamascelli, D.; Schaetz, T.; Huelga, S.F.; Plenio, M.B. A trapped-ion simulator for spin-boson models with structured environments. New J. Phys. 2018, 20, 073002. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzanski, R.; Jarzyna, M.; Kolodynski, J. Quantum Limits in Optical Interferometry. Progr. Opt. 2015, 60, 345. [Google Scholar]
- Cavina, V.; Mancino, L.; Pasquale, A.D.; Gianani, I.; Sbroscia, M.; Booth, R.I.; Roccia, E.; Raimondi, R.; Giovannetti, V.; Barbieri, M. Bridging thermodynamics and metrology in nonequilibrium quantum thermometry. Phys. Rev. A 2018, 98, 050101(R). [Google Scholar] [CrossRef]
- Garbe, L.; Felicetti, S.; Milman, P.; Coudreau, T.; Keller, A. Metrological advantage at finite temperature for Gaussian phase estimation. Phys. Rev. A 2019, 99, 0.43815. [Google Scholar] [CrossRef]
- Razavian, S.; Paris, M.G.A. Quantum metrology out of equilibrium. Phys. A 2019, 525, 825. [Google Scholar] [CrossRef]
- Paris, M.G.A. Quantum estimation for quantum technology. Int. J. Quant. Inf. 2009, 7, 125. [Google Scholar] [CrossRef]
- Benedetti, C.; Paris, M.G.A. Characterization of classical Gaussian processes using quantum probes. Phys. Lett. A 2014, 378, 2495. [Google Scholar] [CrossRef]
- Zwick, A.; Alvarez, G.A.; Kurizki, G. Maximizing information on the environment by dynamically controlled qubit probes. Phys. Rev. Appl. 2016, 5, 014007. [Google Scholar] [CrossRef]
- Monras, A.; Paris, M.G.A. Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 2007, 98, 160401. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 2001, 63, 042304. [Google Scholar] [CrossRef]
- Fujiwara, A.; Imai, H. Quantum parameter estimation of a generalized Pauli channel. J. Phys. A 2003, 36, 8093. [Google Scholar] [CrossRef]
- Pinel, O.; Jian, P.; Treps, N.; Fabre, C.; Braun, D. Quantum parameter estimation using general single-mode Gaussian states. Phys. Rev. A 2013, 88, 040102. [Google Scholar] [CrossRef] [Green Version]
- Brida, G.; Degiovanni, I.P.; Florio, A.; Genovese, M.; Giorda, P.; Meda, A.; Paris, M.G.A.; Shurupov, A.P. Experimental estimation of entanglement at the quantum limit. Phys. Rev. Lett. 2010, 104, 100501. [Google Scholar] [CrossRef]
- Brida, G.; Degiovanni, I.P.; Florio, A.; Genovese, M.; Giorda, P.; Meda, A.; Paris, M.G.A.; Shurupov, A.P. Optimal estimation of entanglement in optical qubit systems. Phys. Rev. A 2011, 83, 052301. [Google Scholar] [CrossRef] [Green Version]
- Blandino, R.; Genoni, M.G.; Etesse, J.; Barbieri, M.; Paris, M.G.A.; Grangier, P.; Tualle-Brouri, R. Homodyne estimation of Gaussian quantum discord. Phys. Rev. Lett. 2012, 109, 180402. [Google Scholar] [CrossRef]
- Benedetti, C.; Shurupov, A.P.; Paris, M.G.A.; Brida, G.; Genovese, M. Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 2013, 87, 052136. [Google Scholar] [CrossRef] [Green Version]
- Genoni, M.G.; Olivares, S.; Paris, M.G.A. Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 2011, 106, 153603. [Google Scholar] [CrossRef] [PubMed]
- Monras, A. Optimal phase measurements with pure Gaussian states. Phys. Rev. A 2006, 73, 033821. [Google Scholar] [CrossRef]
- Bina, M.; Allevi, A.; Bondani, M.; Olivares, S. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector. Sci. Rep. 2016, 6, 26025. [Google Scholar] [CrossRef] [Green Version]
- Kacprowicz, M.; Demkowicz-Dobrzański, R.; Wasilewski, W.; Banaszek, K.; Walmsley, I.A. Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photonics 2010, 4, 357. [Google Scholar] [CrossRef]
- Spagnolo, N.; Vitelli, C.; Lucivero, V.G.; Giovannetti, V.; Maccone, L.; Sciarrino, F. Phase estimation via quantum interferometry for noisy detectors. Phys. Rev. Lett. 2012, 108, 233602. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, M.; Olivares, S.; Paris, M.G.A. Qubit thermometry for micromechanical resonators. Phys. Rev. A 2011, 84, 032105. [Google Scholar] [CrossRef] [Green Version]
- Correa, L.A.; Mehboudi, M.; Adesso, G.; Sanpera, A. Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 2015, 114, 220405. [Google Scholar] [CrossRef]
- Stenberg, M.P.V.; Sanders, Y.R.; Wilhelm, F.K. Efficient estimation of resonant coupling between quantum systems. Phys. Rev. Lett. 2014, 113, 210404. [Google Scholar] [CrossRef]
- Bina, M.; Amelio, I.; Paris, M.G.A. Dicke coupling by feasible local measurements at the superradiant quantum phase transition. Phys. Rev. E 2016, 93, 052118. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.A.C.; Bina, M.; Paris, M.G.A.; Genoni, M.G.; Adesso, G.; Tufarelli, T. Probing the diamagnetic term in light-matter interaction. Quantum Sci. Technol. 2017, 2, 01LT01. [Google Scholar] [CrossRef]
- Tamascelli, D.; Benedetti, C.; Olivares, S.; Paris, M.G.A. Characterization of qubit chains by Feynman probes. Phys. Rev. A 2016, 94, 042129. [Google Scholar] [CrossRef] [Green Version]
- Leggett, A.J.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1. [Google Scholar] [CrossRef]
- Shnirman, A.; Makhlin, Y.; Schön, G. Noise and decoherence in quantum two-level systems. Phys. Scr. 2002, T102, 147. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Gill, R.D. Fisher information in quantum statistics. J. Phys. A 2000, 33, 4481. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salari Sehdaran, F.; Bina, M.; Benedetti, C.; Paris, M.G.A. Quantum Probes for Ohmic Environments at Thermal Equilibrium. Entropy 2019, 21, 486. https://doi.org/10.3390/e21050486
Salari Sehdaran F, Bina M, Benedetti C, Paris MGA. Quantum Probes for Ohmic Environments at Thermal Equilibrium. Entropy. 2019; 21(5):486. https://doi.org/10.3390/e21050486
Chicago/Turabian StyleSalari Sehdaran, Fahimeh, Matteo Bina, Claudia Benedetti, and Matteo G. A. Paris. 2019. "Quantum Probes for Ohmic Environments at Thermal Equilibrium" Entropy 21, no. 5: 486. https://doi.org/10.3390/e21050486
APA StyleSalari Sehdaran, F., Bina, M., Benedetti, C., & Paris, M. G. A. (2019). Quantum Probes for Ohmic Environments at Thermal Equilibrium. Entropy, 21(5), 486. https://doi.org/10.3390/e21050486