Nonadditive Entropies and Complex Systems
Funding
Acknowledgments
Conflicts of Interest
References
- Boltzmann, L. Weitere Studien uber das Warmegleichgewicht unter Gas molekulen (Further Studies on Thermal Equilibrium Between Gas Molecules). 1872. Available online: http://www.eoht.info/page/Further+Studies+on+the+Thermal+Equilibrium+of+Gas+Molecules (accessed on 27 May 2019).
- Boltzmann, L. On the Relation of a General Mechanical Theorem to the Second Law of Thermodynamics. In Kinetic Theory: Irreversible Processes; Brush, S., Ed.; Pergamon Press: Oxford, UK, 1966; Volume 2, pp. 188–193, (English translation of Uber die Beziehung eines allgemeine mechanischen Satzes zum zweiten Haupsatze derWarmetheorie). [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics—Developed with Especial Reference to the Rational Foundation of Thermodynamics (C. Scribner’s Sons, New York, NY, USA, 1902; Yale University Press: New Haven, CT, USA, 1948); OX Bow Press: Woodbridge, CT, USA, 1981. [Google Scholar]
- Gibbs, J.W. The Collected Works of J.Willard Gibbs (Vol. 1: Thermodynamics); Yale University Press: New Haven, CT, USA, 1948. [Google Scholar]
- Von Neumann, J. Thermodynamik Quantenmechanischer Gesamtheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen 1927, 1927, 273–291. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Rényi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, LA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Rényi, A. Probability Theory; North-Holland Co.: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Sharma, B.D.; Mittal, D.P. New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 1975, 10, 28. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479. [Google Scholar] [CrossRef]
- Abe, S. A note on the q-deformation theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 1997, 224, 326. [Google Scholar] [CrossRef]
- Borges, E.P.; Roditi, I. A family of non-extensive entropies. Phys. Lett. A 1998, 246, 399. [Google Scholar] [CrossRef]
- Landsberg, P.T.; Vedral, V. Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 1998, 247, 211. [Google Scholar] [CrossRef]
- Curado, E.M.F. General aspects of the thermodynamical formalism. Braz. J. Phys. 1999, 29, 36. [Google Scholar] [CrossRef]
- Anteneodo, C.; Plastino, A.R. Maximum entropy approach to stretched exponential probability distributions. Phys. A 1999, 32, 1089. [Google Scholar] [CrossRef]
- Kaniadakis, G. Non linear kinetics underlying generalized statistics. Phys. A 2001, 296, 405. [Google Scholar] [CrossRef]
- Tsallis, C.; Souza, A.M.C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Phys. Rev. E 2003, 67, 026106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwammle, V.; Tsallis, C. Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy. J. Math. Phys. 2007, 48, 113301. [Google Scholar] [CrossRef] [Green Version]
- Shafee, F. Lambert function and a new non-extensive form of entropy. IMA J. Appl. Math. 2007, 72, 785. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516. [Google Scholar] [CrossRef]
- Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar] [CrossRef] [Green Version]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. Europhys. Lett. 2011, 93, 20006. [Google Scholar] [CrossRef]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Tempesta, P.; Tsallis, C. A new entropy based on a group-theoretical structure. Ann. Phys. 2016, 366, 22. [Google Scholar] [CrossRef]
- Tempesta, P. Beyond the Shannon-Khinchin formulation: The composability axiom and the universal-group entropy. Ann. Phys. 2016, 365, 180. [Google Scholar] [CrossRef]
- Jensen, H.J.; Pazuki, R.H.; Pruessner, G.; Tempesta, P. Statistical mechanics of exploding phase spaces: Ontic open systems. J. Phys. A Math. Theor. 2018, 51, 375002. [Google Scholar] [CrossRef]
- Rodriguez, A.; Nobre, F.D.; Tsallis, C. d-dimensional classical Heisenberg model with arbitrarily-ranged interactions: Lyapunov exponents and distributions of momenta and energies. Entropy 2019, 21, 31. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Nobre, F.D.; Plastino, A. Associating an entropy with power-law frequency of events. Entropy 2018, 20, 940. [Google Scholar] [CrossRef]
- Viallon-Galinier, L.; Combe, G.; Richefeu, V.; Atman, A.P.F. Emergence of shear bands in confined granular systems: Singularity of the q-statistics. Entropy 2018, 20, 862. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. Maximum configuration principle for driven systems with arbitrary driving. Entropy 2018, 20, 838. [Google Scholar] [CrossRef]
- Obregon, O.; Lopez, J.L.; Ortega-Cruz, M. On quantum superstatistics and the critical behavior of nonextensive ideal Bose gases. Entropy 2018, 20, 773. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Darus, M. Analytic study of complex fractional Tsallis’ entropy with applications in CNNs. Entropy 2018, 20, 722. [Google Scholar] [CrossRef]
- Zhao, P.; Pan, J.; Zhou, B.; Wang, J.; Song, Y. Hedging for the Regime-Switching Price Model Based on Non-Extensive Statistical Mechanics. Entropy 2018, 20, 248. [Google Scholar] [CrossRef]
- Cetin, K.; Afsar, O.; Tirnakli, U. Generalized Pesin-like identity and scaling relations at the chaos threshold of the Rössler system. Entropy 2018, 20, 216. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, B.; Wang, J. Non-Gaussian closed form solutions for geometric average asian options in the framework of non-extensive statistical mechanics. Entropy 2018, 20, 71. [Google Scholar] [CrossRef]
- Jensen, H.J.; Tempesta, P. Group entropies: From phase space geometry to entropy functionals via group theory. Entropy 2018, 20, 804. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapisarda, A.; Thurner, S.; Tsallis, C. Nonadditive Entropies and Complex Systems. Entropy 2019, 21, 538. https://doi.org/10.3390/e21050538
Rapisarda A, Thurner S, Tsallis C. Nonadditive Entropies and Complex Systems. Entropy. 2019; 21(5):538. https://doi.org/10.3390/e21050538
Chicago/Turabian StyleRapisarda, Andrea, Stefan Thurner, and Constantino Tsallis. 2019. "Nonadditive Entropies and Complex Systems" Entropy 21, no. 5: 538. https://doi.org/10.3390/e21050538
APA StyleRapisarda, A., Thurner, S., & Tsallis, C. (2019). Nonadditive Entropies and Complex Systems. Entropy, 21(5), 538. https://doi.org/10.3390/e21050538