Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy
Abstract
:At ubi materia, ibi Geometria.(Johannes Kepler)
1. Introduction
2. A Geometric Pathway to Kinetic Theories
2.1. Complete Tangent and Cotangent Lifts
2.1.1. Complete Tangent Lift
2.1.2. Complete Cotangent Lift
2.2. From Jet Bundle to Tangent Bundle
2.2.1. Holonomic Lifts of Vector Fields
2.2.2. Lie Algebra of Generalized Vector Fields
2.2.3. Vertical Representatives
2.3. Lie–Poisson Dynamics of Incompressible Systems
2.3.1. Vertical Lifts of One-Forms
2.3.2. Geometry of Lie–Poisson Equations
2.4. Example: Incompressible Fluid Flow
2.5. Example: Vlasov’s Plasma
2.5.1. Lie Algebra of the Canonical Diffeomorphisms
2.5.2. The Dual Space
2.5.3. Momentum-Vlasov Equations
2.6. Example: Averaged 2D-Euler Equation
3. Generalized Complete Cotangent Lift
3.1. Schouten Concomitant
3.1.1. Lie Subalgebras of Schouten Algebra
3.1.2. Matched Pair (Bicross Product) Realization of
3.1.3. Lie Group Underlying
3.2. Lifts of Tensor Fields to the Cotangent Bundle
3.2.1. Tensors to Functions
3.2.2. Generalized Complete Cotangent Lift (GCCL)
3.2.3. GCCL on the Subalgebras of
3.3. The Dual Spaces and Poisson Brackets
3.3.1. The Dual of and Kuperschmidt–Manin Bracket
3.3.2. The Dual of and Compressible Fluid Bracket
3.3.3. The Dual of and Momentum-Vlasov Bracket
3.4. Lifts of Actions to Cotangent Bundle
3.5. The Dual Mapping of GCCL
M-Vlasov to Fluid Map
4. Geometric Pathways to Fluid Theories
4.1. Momentum Formulation of Compressible Fluid Flow
4.1.1. Momentum-Euler Equations
4.1.2. Back to the Classical Form of the Compressible Fluid
4.2. The 10-Moment Approximation
4.2.1. Double GCCL of the Second Order Tensor Field
4.2.2. Vertical Representative
4.2.3. Projection to Moments
4.2.4. Adding Entropy
4.2.5. Central Kinetic Moments
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GENERIC | General Equation for Nonequilibrium Reversible–Irreversible Coupling |
GCCL | generalized complete cotangent lift |
Lie derivative | |
Lie algebra of group G | |
H | Hamiltonian function(al) |
M | momentum density with units kg ms/m |
chemical potential with units J/m | |
symplectic two-form | |
density with units kg/m | |
E | energy with units J |
one-particle distribution function with units of inverse Planck constant | |
pressure tensor | |
conjugate pressure tensor | |
s | entropy density with units K J/m |
T | temperature with units K |
cotangent bundle of manifold G | |
tangent bundle of manifold G | |
x | state variable |
complete cotangent lift of vector field X |
References
- Holm, D.D.; Marsden, J.E.; Ratiu, T.; Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 1985, 123, 1–116. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.; Weinstein, A. The Hamiltonian-Structure of the Maxwell-Vlasov Equations. Phys. D 1982, 4, 394–406. [Google Scholar] [CrossRef]
- Marsden, J.E.; Morrison, P.J.; Weinstein, A. The hamiltonian structure of the BBGKY hierarchy equations. Cont. Math. AMS 1984, 28, 115–124. [Google Scholar]
- Clebsch, A. Über die Integration der Hydrodynamische Gleichungen. J. Für Die Reine Und Angew. Math. 1895, 56, 1–10. [Google Scholar]
- Arnold, V. Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits. Ann. De L’institut Fourier 1966, 16, 319–361. [Google Scholar] [CrossRef]
- Holm, D.D. Hamiltonian dynamics of a charged fluid, including electro-and magnetohydrodynamics. Phys. Lett. A 1986, 114, 137–141. [Google Scholar] [CrossRef]
- Holm, D.; Kupershmidt, B. Noncanonical Hamiltonian-formulation of ideal magnetohydrodynamics. Phys. D 1983, 7, 330–333. [Google Scholar] [CrossRef]
- Godunov, S. Symmetric form of the magnetohydrodynamic equation. Chislennye Metod. Mekh. Sploshnoi Sredy 1972, 3, 26–34. [Google Scholar]
- Peshkov, I.; Pavelka, M.; Romenski, E.; Grmela, M. Continuum Mechanics and Thermodynamics in the Hamilton and the Godunov-type Formulations. Contin. Mech. Thermodyn. 2018, 30, 1343–1378. [Google Scholar] [CrossRef]
- Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O. High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. J. Comput. Phys. 2017, 348, 298–342. [Google Scholar] [CrossRef]
- Wakif, A.; Boulahia, Z.; Amine, A.; Animasaun, I.; Afridi, M.; Qasim, M.; Sehaqui, R. Magneto-convection of alumina—Water nanofluid within thin horizontal layers using the revised generalized Buongiorno’s model. Front. Heat Mass Transf. 2019, 12, 3. [Google Scholar] [CrossRef]
- Wakif, A.; Qasim, M.; Afridi, M.; Saleem, S.; Al-Qarni, M. Numerical Examination of the Entropic Energy Harvesting in a Magnetohydrodynamic Dissipative Flow of Stokes’ Second Problem: Utilization of the Gear-Generalized Differential Quadrature Method. J. Nonequilibrium Thermodyn. 2019. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics; Walter de Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Öttinger, H.C.; Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 1997, 56, 6633–6655. [Google Scholar] [CrossRef]
- Beris, A.; Edwards, B. Thermodynamics of Flowing Systems; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Öttinger, H. Beyond Equilibrium Thermodynamics; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Dzyaloshinskii, I.E.; Volovick, G.E. Poisson brackets in condense matter physics. Ann. Phys. 1980, 125, 67–97. [Google Scholar] [CrossRef]
- Grmela, M. Particle and Bracket Formulations of Kinetic Equations. Contemp. Math. 1984, 28, 125–132. [Google Scholar]
- Morrison, P.J. Bracket formulation for irreversible classical fields. Phys. Lett. A 1984, 100, 423–427. [Google Scholar] [CrossRef]
- Kaufman, A. Dissipative Hamiltonian systems: A unifying principle. Phys. Lett. A 1984, 100, 419–422. [Google Scholar] [CrossRef]
- Morrison, P.J. A paradigm for joined Hamiltonian and dissipative systems. Phys. D Nonlinear Phenom. 1986, 18, 410–419. [Google Scholar] [CrossRef]
- Bloch, A.; Krishnaprasad, P.; Marsden, J.E.; Ratiu, T.S. The Euler-Poincare Equations and Double Bracket Dissipation. Commun. Math. Phys. 1996, 175, 1–42. [Google Scholar] [CrossRef]
- Grmela, M. Contact Geometry of Mesoscopic Thermodynamics and Dynamics. Entropy 2014, 16, 1652–1686. [Google Scholar] [CrossRef] [Green Version]
- Bravetti, A.; Cruz, H.; Tapias, D. Contact Hamiltonian Mechanics. Ann. Phys. 2017, 376, 17–39. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Yoshimura, H. From Lagrangian Mechanics to Nonequilibrium Thermodynamics: A Variational Perspective. Entropy 2019, 21, 8. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Yoshimura, H. From variational to bracket formulations in nonequilibrium thermodynamics of simple systems. arXiv 2019, arXiv:1904.05958. [Google Scholar]
- Grmela, M. Role of thermodynamics in multiscale physics. Comput. Math. Appl. 2013, 65, 1457–1470. [Google Scholar] [CrossRef]
- De León, M.; Rodrigues, P. Methods of Differential Geometry in Analytical Mechanics; North-Holland Mathematics Studies: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Marsden, J.; Ratiu, T.S. Introduction to Mechanics and Symmetry; Volume Second Edition, Texts in Applied Mathematics 17; Springer-Verlag: New York, NY, USA, 1999. [Google Scholar]
- Marsden, J.E. A group theoretical approach to the equations of plasma physics. Canad. Math. Bull. 1982, 25, 129–142. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1989. [Google Scholar]
- Libermann, P.; Marle, C.M. Symplectic Geometry and Analytic Mechanics; D. Reidel Publishing Company, Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Guillemin, V.; Sternberg, S. Symplectic Techniques in Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Ratiu, T.; Schmid, R.; Adams, M. The Lie Group Structure of Diffeomorphism Groups and Invertible Fourier Integral Operators with Appllications. In Infinite Dimensional Groups with Applications; Kac, V., Ed.; Springer-Verlag: New York, NY, USA, 1985; pp. 1–69. [Google Scholar]
- Ratiu, T.; Schmid, R. The differentiable structure of three remarkable diffeomorphism groups. Math. Z. 1981, 177, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Morrison, P.J. Poisson brackets for fluids and plasmas. In AIP Conference Proceedings 88; Taber, M., Treve, Y., Eds.; AIP: New York, NY, USA, 1982; pp. 13–46. [Google Scholar]
- Banyaga, A. The Structure of Classical Diffeomorphism Groups; Kluwer: Dortrecht, The Netherlands, 1997. [Google Scholar]
- Kolár, I.; Slovák, J.; Michor, P. Natural Operations in Differential Geometry; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1993. [Google Scholar]
- Kriegl, A.; Michor, P. The Convenient Setting of Global Analysis; American Mathematical Society: Ann Arbor, MI, USA, 1997; Volume 53. [Google Scholar]
- Arnold, V.; Khesin, B. Topological Methods in Hydrodynamics; Applied Mathematical Sciences; Springer-Verlag: New York, NY, USA, 1998; Volume 125. [Google Scholar]
- Esen, O.; Gümral, H. Lifts, jets and reduced dynamics. Int. J. Geom. Meth. Mod. Phys. 2011, 8, 331–344. [Google Scholar] [CrossRef]
- Esen, O.; Gümral, H. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. J. Geom. Mech. 2012, 4, 239–269. [Google Scholar] [CrossRef]
- Patterson, E.; Yano, K. Vertical and complete lifts from a manifold to its cotangent bundle. J. Math. Soc. Jpn. 1967, 19, 91–113. [Google Scholar]
- Gibbons, J. Collisionless Boltzmann equations and integrable moment equations. Phys. D 1981, 3, 503–511. [Google Scholar] [CrossRef]
- Gibbons, J.; Holm, D.; Tronci, C. Vlasov moments, integrable systems and singular solutions. Phys. Lett. A 2008, 372, 1024–1033. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, J.; Holm, D.; Tronci, C. Geometry of Vlasov kinetic moments: A bosonic Fock space for the symmetric Schouten bracket. Phys. Lett. A 2008, 372, 4184–4196. [Google Scholar] [CrossRef] [Green Version]
- Holm, D.; Tronci, C. Geodesic Vlasov equations and their integrable moment closures. J. Geom. Mech. 2009, 1, 181–208. [Google Scholar]
- Tronci, C. Geometric Dynamics of Vlasov Kinetic Theory and Its Moments. Ph.D. Thesis, Imperial College, London, UK, 2008. [Google Scholar]
- Fecko, M. Differential Geometry and Lie Groups for Physicists, Reissue ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Marsden, J. A correspondence principle for momentum operators. Can. Math. Bull. 1967, 10, 247–250. [Google Scholar] [CrossRef]
- Saunders, D. The Geometry of Jet Bundles; London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK, 1989; Volume 142. [Google Scholar]
- Kosmann-Schwarzbach, Y. Vector Fields and Generalized Vector Fields on Fibered Manifolds, Geometry and Differential Geometry (Proc. Conf. Univ. Haifa, Israël, 1979). In Lecture Notes in Mathematics 792; Artzy, R., Vaisman, I., Eds.; Springer-Verlag: Heidelberg, Germany, 1980; pp. 307–355. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: Berlin, Germany, 2000. [Google Scholar]
- Tulczyjew, W. The Euler-Lagrange Resolution. In Part I, Proceedings of the International Colloquium Of The C.N.R.S., Aix-en-Provence, France, 3–7 September 1979; Souriau, J.M., Ed.; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Marsden, J.; Weinstein, A. Coadjoint orbits, vortices, and clebsch variables for incompressible fluids. Phys. D 1983, 7, 305–323. [Google Scholar] [CrossRef]
- Gümral, H. Geometry of plasma dynamics. I. Group of canonical diffeomorphisms. J. Math. Phys. 2010, 51, 083501. [Google Scholar] [CrossRef]
- Marsden, J.E.; Ratiu, T.; Schmid, R.; Spencer, R.G.; Weinstein, A.J. Hamiltonian Systems with Symmetry, Coadjoint Orbits and Plasma Physics. In Proceedings of the Academia della Scienze of Turin, Turin, Italy, 7–11 June 1982; pp. 289–340. [Google Scholar]
- Holm, D.D.; Marsden, J.; Ratiu, T. Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 1998, 349, 4173–4177. [Google Scholar] [CrossRef]
- Marsden, J.E.; Ratiu, T.S.; Shkoller, S. The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal. GAFA 2000, 10, 582–599. [Google Scholar] [CrossRef] [Green Version]
- Schouten, J. Über Differentialkonkomitanten zweier kontravarianter Größen. Indag. Math. 1940, 2, 449–452. [Google Scholar]
- Grmela, M.; Hong, L.; Jou, D.; Lebon, G.; Pavelka, M. Hamiltonian and Godunov structures of the Grad hierarchy. Phys. Rev. E 2017, 95, 033121. [Google Scholar] [CrossRef] [Green Version]
- Majid, S. Foundations of Quantum Group Theory; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Esen, O.; Sütlü, S. Hamiltonian dynamics on matched pairs. Int. J. Geom. Methods Mod. Phys. 2016, 13. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; Sütlü, S. Lagrangian dynamics on matched pairs. J. Geom. Phys. 2017, 111, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; Sütlü, S. Matched pairs of discrete dynamical systems. arXiv 2018, arXiv:1809.00521. [Google Scholar]
- Dubois-Violette, M.; Michor, P. A common generalization of the Frolicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields. Indag. Math. 1995, 6, 51–66. [Google Scholar] [CrossRef]
- Norris, L. Generalized symplectic geometry on the frame bundle of a manifold. Proc. Symp. Pure Math. 1993, 54, 435–465. [Google Scholar] [Green Version]
- Marsden, J.; Ratiu, T.; Weinstein, A. Semidirect Products and Reduction in Mechanics. Trans. Am. Math. Soc. 1984, 281, 147–177. [Google Scholar] [CrossRef]
- Morrison, P.J.; Greene, J.M. Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. Phys. Rev. Lett. 1980, 45, 790–794. [Google Scholar] [CrossRef] [Green Version]
- Morrison, P. Hamiltonian Description of the Ideal Fluid. Rev. Mod. Phys. 1998, 70, 467–521. [Google Scholar] [CrossRef]
- Marsden, J.; Weinstein, A.; Ratiu, T.; Schmid, R.; Spencer, R. Hamiltonian Systems with Symmetry, Coadjoint Orbits and Plasma Physics. Atti Acad. Sci. Torino Cl. Sci. Fis. 1983, 117, 289–340. [Google Scholar]
- Pavelka, M.; Klika, V.; Esen, O.; Grmela, M. A hierarchy of Poisson brackets in non-equilibrium thermodynamics. Phys. D Nonlinear Phenom. 2016, 335, 54–69. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, T.; Sugiyama, M. Rational Extended Thermodynamics Beyond the Monoatomic Gas; Springer International Publishing: Basel, Switzerland, 2015. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esen, O.; Grmela, M.; Gümral, H.; Pavelka, M. Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy. Entropy 2019, 21, 907. https://doi.org/10.3390/e21090907
Esen O, Grmela M, Gümral H, Pavelka M. Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy. Entropy. 2019; 21(9):907. https://doi.org/10.3390/e21090907
Chicago/Turabian StyleEsen, Oğul, Miroslav Grmela, Hasan Gümral, and Michal Pavelka. 2019. "Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy" Entropy 21, no. 9: 907. https://doi.org/10.3390/e21090907
APA StyleEsen, O., Grmela, M., Gümral, H., & Pavelka, M. (2019). Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy. Entropy, 21(9), 907. https://doi.org/10.3390/e21090907