Survey Assessment for Decision Support Using Self-Organizing Maps Profile Characterization with an Odds and Cluster Heat Map: Application to Children’s Perception of Urban School Environments
Abstract
:1. Introduction
2. State-of-the-Art DSS and SOM Applications
3. Materials and Methods
3.1. Data Preparation (Information, Processing Functions, and Data Sets)
3.1.1. Case Study
3.1.2. Data Collection
3.2. Construction of SOMs (Models)
3.3. Clustering in Profiles (Models)
3.4. Evaluation of Profiles (Models)
3.4.1. Non-Parametric Tests
3.4.2. Effect Size
3.5. Preparation of the Odds and Cluster Heat Map (Visual Representations)
4. Results
4.1. Survey Self-Organizing Maps and Clustering Profiles
4.2. Statistical Significance of Profiles Using Non-Parametric Tests
4.3. Effect Size Assessment
4.4. Odds and Cluster Heat Map: Interpretation of Survey Profiles
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gorry, G.A.; Scott Morton, M.S. A Framework for Management Information System. Sloan Sch. 1971, 458–470. [Google Scholar]
- Keen, P.G.W. Decision support systems: The next decade. Decis. Support Syst. 1987, 3, 253–265. [Google Scholar] [CrossRef]
- Power, D.J.; Sharda, R.; Burstein, F. Decision Support Systems. In Wiley Encyclopedia of Management; Cooper, C.L., Ed.; John Wiley & Sons: Chichester, UK, 2015; pp. 1–4. ISBN 9781118785317. [Google Scholar]
- Power, D.J. Decision Support Systems: Concepts and Resources for Managers; Greenwood Publishing Group: Santa Barbara, CA, USA, 2002; ISBN 156720497X. [Google Scholar]
- Burstein, F.; Holsapple, C. Handbook on Decision Support Systems 1: Basic Themes; Springer: Berlin/Heidelberger, Germany, 2008; ISBN 9783540487135. [Google Scholar]
- Ríos Insua, D.; Kersten, G.E.; Rios, J.; Grima, C. Towards Decision Support for Participatory Democracy. In Handbook on Decision Support Systems 2: Variations; Burstein, F., Holsapple, C.W., Eds.; Springer: Berlin Heidelberg, 2008; pp. 651–685. [Google Scholar]
- Tabrizi, T.S.; Khoie, M.R.; Sahebkar, E.; Rahimi, S.; Marhamatil, N. Towards a Patient Satisfaction Based Hospital Recommendation System. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 131–138. [Google Scholar]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 22, 5–55. [Google Scholar]
- Martín Guerrero, J.D.; Marcelli, D.; Soria-Olivas, E.; Mari, F.; Martínez-Martínez, J.M.; Soley Bech, I.; Martínez-Sober, M.; Scatizzi, L.; Gómez-Sanchis, J.; Stopper, A.; et al. Self-Organising Maps: A new way to screen the level of satisfaction of dialysis patients. Expert Syst. Appl. 2012, 39, 8793–8798. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, H.K.; Choi, I.Y.; Kim, J.K. A literature review and classification of recommender systems research. Expert Syst. Appl. 2012, 39, 10059–10072. [Google Scholar] [CrossRef]
- Kauko, T. Using the self-organising map to identify regularities across country-specific housing-market contexts. Environ. Plan. B Plan. Des. 2005, 32, 89–110. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organizing Maps; Springer: Berlin/Heidelberger, Germany, 1995; ISBN 9783642852152. [Google Scholar]
- Bação, F.; Lobo, V.; Painho, M. Self-organizing maps as substitutes for k-means clustering. Comput. Sci. 2005, 3516, 476–483. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Vesanto, J. SOM-based data visualization methods. Intell. Data Anal. 1999, 3, 111–126. [Google Scholar] [CrossRef]
- Voutilainen, A.; Kvist, T.; Sherwood, P.R.; Vehviläinen-Julkunen, K. A New Look at Patient Satisfaction. Learning From Self-Organizing Maps. Nurs. Res. 2014, 63, 333–345. [Google Scholar] [CrossRef]
- Silver, M.S. On the Design Features of Decision Support Systems: The Role of System Restrictiveness and Decisional Guidance. In Handbook on Decision Support Systems 2: Variations; Burstein, F., Holsapple, C.W., Eds.; Springer: Berlin/Heidelberger, Germany, 2008; pp. 261–291. [Google Scholar]
- Carlsson, S.A.; Sawy, O.A. El Decision Support in Turbulent and High-Velocity Environments. In Handbook on Decision Support Systems 2: Variations; Burstein, F., Holsapple, C.W., Eds.; Springer: Berlin/Heidelberger, Germany, 2008; pp. 3–17. ISBN 978-3-540-48715-9. [Google Scholar]
- Kaski, S.; Kohonen, T. Exploratory Data Analysis By The Self-Organizing Map: Structures Of Welfare And Poverty In The World (1996). In Proceedings of the Neural Networks in the Capital Markets-Neuronal Networks in Financial Engineering, London, UK, 11–13 October 1996; pp. 498–507. [Google Scholar]
- Ayeni, B. The design of spatial decision support systems in urban and regional planning. In Decision Support System in Urban Planning; Timmermans, H., Ed.; Routledge: Abingdon-on-Thames, UK, 1997; pp. 3–15. [Google Scholar]
- Weber, B.W. Financial DSS: Systems for Supporting Investment Decisions. In Handbook on Decision Support Systems 2; Burstein, F., W. Holsapple, C., Eds.; Springer: Berlin/Heidelberger, Germany, 2008; pp. 419–442. [Google Scholar]
- Hart, M. Systems for Supporting Marketing Decisions Background. In Handbook on Decision Support Systems 2; Burstein, F., W. Holsapple, C., Eds.; Springer: Berlin/Heidelberger, Germany, 2008; pp. 395–417. [Google Scholar]
- Negash, S.; Gray, P. Business Intelligence. In Handbook on Decision Support Systems 2: Variatio; Burstein, F., W. Holsapple, C., Eds.; Springer: Berlin/Heidelberger, Germany, 2008; pp. 175–193. [Google Scholar]
- Kuo, R.J.; Chen, C.H.; Hwang, Y.C. An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Syst. 2001, 118, 21–45. [Google Scholar] [CrossRef]
- Cox, P.G. Some issues in the design of agricultural decision support systems. Agric. Syst. 1996, 52, 355–381. [Google Scholar] [CrossRef] [Green Version]
- Kek, A.G.H.; Cheu, R.L.; Meng, Q.; Fung, C.H. A decision support system for vehicle relocation operations in carsharing systems. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 149–158. [Google Scholar] [CrossRef]
- Kohli, R.; Piontek, F. DSS in Healthcare: Advances and Opportunities. In Handbook for Decision Support Systems 2; Burstein, F., W. Holsapple, C., Eds.; Springer: Berlin/Heidelberger, Germany, 2008; pp. 483–497. [Google Scholar]
- Garg, A.X.; Adhikari, N.K.J.; McDonald, H.; Rosas-Arellano, M.P.; Devereaux, P.J.; Beyene, J.; Sam, J.; Haynes, R.B. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. J. Am. Med. Assoc. 2005, 293, 1223–1238. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.; Mellema, A.; Hsieh, C.H.; Bhatt, T.; Cheng, M.; Dietz, E.; Stearns, S. Decision Support for Security: A Mixed Reality Approach to Bioterror Preparedness and Response. In Handbook on Decision Support Systems 2; Springer: Berlin/Heidelberger, Germany, 2008; pp. 463–481. [Google Scholar]
- Mysiak, J.; Giupponi, C.; Rosato, P. Towards the development of a decision support system for water resource management. Environ. Model. Softw. 2005, 20, 203–214. [Google Scholar] [CrossRef]
- Hoch, S.J.; Schkade, D.A. A psychological approach to decision support systems. Manage. Sci. 1996, 42, 51–64. [Google Scholar] [CrossRef]
- Feng, S.; Xu, L.D. Decision support for fuzzy comprehensive evaluation of urban development. Fuzzy Sets Syst. 1999, 105, 1–12. [Google Scholar] [CrossRef]
- Arampatzis, G.; Kiranoudis, C.T.; Scaloubacas, P.; Assimacopoulos, D. A GIS-based decision support system for planning urban transportation policies. Eur. J. Oper. Res. 2004, 152, 465–475. [Google Scholar] [CrossRef]
- Montanari, A.; Londei, A.; Staniscia, B. Can we interpret the evolution of coastal land use conflicts? Using Artificial Neural Networks to model the effects of alternative development policies. Ocean Coast. Manag. 2014, 101, 114–122. [Google Scholar] [CrossRef]
- Cao, L. Data Mining for Business Applications; Cao, L., Philip, S.Y., Zhang, C., Zhang, H., Eds.; Springer: Berlin/Heidelberger, Germany, 2009; ISBN 9780387794198. [Google Scholar]
- Ritter, H.; Kohonen, T. Self-organizing semantic maps. Biol. Cybern. 1989, 61, 241–254. [Google Scholar] [CrossRef]
- Kohonen, T.; Oja, E.; Simula, O.; Visa, a.; Kangas, J. Engineering applications of the self-organizing map. Proc. IEEE 1996, 84, 1358–1384. [Google Scholar] [CrossRef]
- Kropp, J. A neural network approach to the analysis of city systems. Appl. Geogr. 1998, 18, 83–96. [Google Scholar] [CrossRef]
- Diappi, L.; Bolchim, P.; Buscema, M. Improved Understanding of Urban Sprawl Using Neural Networks. In Recent Advances in Design and Decision Support Systems in Architecture and Urban Planning; Van-Leeuwen, J.P., Timmermans, H.J.P., Eds.; Springer: Berlin/Heidelberger, Germany, 2004; pp. 33–49. ISBN 1-4020-2408-8. [Google Scholar]
- Hagen-Zanker, A.; Timmermans, H.J.P. A Metric of Compactness of Urban Change Illustrated to 22 European Countries. Eur. Inf. Soc. Tak. Geoinf. Sci. One Step Furth. 2009, 181–200. [Google Scholar]
- Abarca-Alvarez, F.J.; Fernández-Avidad, Á. Generation of Downtown Planning-Ordinances using Self Organizing Maps. In Proceedings of the Design & Decision Support Systems: 10th International Conference on Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven, The Netherlands, 19–22 July 2010; pp. 63–79. [Google Scholar]
- Abarca-Alvarez, F.J. Identificación de patrones para la ordenación urbanística mediante redes neuronales. Hacia la Ordenanza-red. Ser. Geográfica 2011, 17, 45–60. [Google Scholar]
- Sarlin, P. Exploiting the self-organizing financial stability map. Front. Artif. Intell. Appl. 2012, 243, 248–257. [Google Scholar] [CrossRef]
- Abarca-Alvarez, F.J.; Osuna-Pérez, F. Cartografías semánticas mediante redes neuronales: Los mapas auto-organizados (SOM) como representación de patrones y campos. EGA. Rev. expresión gráfica Arquit. 2013, 18, 154–163. [Google Scholar] [CrossRef]
- De Almeida Gago, E.L.; Davis Breda, G.; Zanoni Marques, E.; de Souza Mendes, L. Knowledge Discovery: Data Mining by Self-organizing Maps. In International Conference on Web Information Systems and Technologies; Springer: Berlin/Heidelberger, Germany, 2013; pp. 185–200. [Google Scholar]
- Wang, S.; Wang, H. Conceptual construction on incomplete survey data. Data Knowl. Eng. 2004, 49, 311–323. [Google Scholar] [CrossRef]
- Garavaglia, S.B. Health care customer satisfaction survey analysis using self-organizing maps and ‘exponentially smeared’ data vectors. Proc. Int. Jt. Conf. Neural Networks 2000, 4, 119–124. [Google Scholar]
- Kamiura, N.; Saitoh, A.; Isokawa, T.; Matsui, N. Classification of Interview Sheets Using Self-Organizing. In Proceedings of the 19th International Conference on Neural Information Processing (ICONIP), Doha, Qatar, 12–15 November 2012; pp. 148–155. [Google Scholar]
- Lagus, K.; Saari, J.; Nieminen, I.T.; Honkela, T. Exploration of loneliness questionnaires using the self-organising map. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberger, Germany, 2013; pp. 405–411. [Google Scholar]
- Corcos, J.; Behlouli, H.; Beaulieu, S. Identifying cut-off scores with neural networks for interpretation of the Incontinence Impact Questionnaire. Neurourol. Urodyn. 2002, 21, 198–203. [Google Scholar] [CrossRef]
- Zielińska, M.; Hamułka, J.; Gajda, K. Family influences on breakfast frequency and quality among primary school pupils in Warsaw and its surrounding areas. Rocz. Panstw. Zakl. Hig. 2015, 66, 143–149. [Google Scholar]
- Trafialek, J.; Laskowski, W.; Kolanowski, W. The use of Kohonen’s artificial neural networks for analyzing the results of HACCP system declarative survey. Food Control 2015, 51, 263–269. [Google Scholar] [CrossRef]
- Diappi, L.; Bolchi, P.; Gaeta, L. Gentrification Without Exclusion? A SOM Neural Network Investigation on the Isola District in Milan. In Emergent Phenomena in Housing Markets: Gentrification, Housing Search, Polarization; Diappi, L., Ed.; Springer: New York, NY, USA, 2013; pp. 127–149. ISBN 978-3-7908-2863-4. [Google Scholar]
- Onoda, T. Evaluation patterns of Japanese representative athletes in the 2008 Beijing Olympic Games: Visualization of social expectation and satisfaction by use of self-organizing maps. In Proceedings of the The 16th International Conference on Neural Information Processing, Bangkok, Thailand, 1–5 December 2009; Volume 5864, pp. 855–864. [Google Scholar]
- Tóth, Z.E.; Jónás, T. Using Modern Quality Management Tools to Improve Finance and Business University Courses. In Proceedings of the 11th International Scientific Conference on European Financial Systems, Lednice, South Moravia, Czech Republic, 12–13 June 2014; pp. 646–654. [Google Scholar]
- Cottrell, M.; Letrémy, P. How to use the Kohonen algorithm to simultaneously analyze individuals and modalities in a survey. Neurocomputing 2005, 63, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Cottrell, M.; Letrémy, P. Analyzing surveys using the Kohonen algorithm. In Proceedings of the 11th European Symposium on Artificial Neural Networks, Bruges, Belgium, 23–25 April 2003; pp. 85–92. [Google Scholar]
- Castells, N.; Mateos, M.; Martín, E.; Solé, I.; Miras, M. Profiles of self-perceived competencies and conceptions of academic writing in university students/Perfiles de competencias y concepciones sobre la escritura académica en estudiantes universitarios. Cult. y Educ. 2015, 27, 569–593. [Google Scholar] [CrossRef]
- Sohn, K. Feature Mapping the Seoul Metro Station Areas Based on a Self-Organizing Map. J. Urban Technol. 2013, 20, 23–42. [Google Scholar] [CrossRef]
- Cottrell, M.; Ibbou, S.; Letrémy, P. SOM-based algorithms for qualitative variables. Neural Netw. 2004, 17, 1149–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Lai, Y.; Li, X.; Zhang, X. An alternative model for measuring the sustainability of urban regeneration: The way forward. J. Clean. Prod. 2015, 109, 76–83. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar]
- Ketchen, D.J.; Shook, C.L. The Application Of Cluster Analysis In Strategic Management Reseach: An Anlysis and Critique. Strateg. Manage. J. 1996, 17, 441–458. [Google Scholar] [CrossRef]
- Zhao, Q.; Xu, M.; Fränti, P. Sum-of-Squares Based Cluster Validity Index and Significance Analysis. In Proceedings of the Adaptative and Natural Computing Algorithms. 9th International Conference, ICANNGA 2009, Kuopio, Finland, 23–25 April 2009; Springer: Berlin/Heidelberger, Germany, 2009; Volume 9, pp. 313–322. [Google Scholar]
- Ball, G.H.; Hall, D.J. A Novel Method of Data Analysis Andpattern Classification; SRI International: Menlo Park, CA, USA, 1965. [Google Scholar]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Lletí, R.; Ortiz, M.C.; Sarabia, L.A.; Sánchez, M.S. Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal. Chim. Acta 2004, 515, 87–100. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009; ISBN 9780138132637. [Google Scholar]
- Yates, F. Contingency Tables Involving Small Numbers and the χ2 Test. Suppl. J. R. Stat. Soc. 1934, 1, 217–235. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size—or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, R.L.; Lazar, N.A. The Asa’s Statement on P-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef]
- Coe, R.; Merino, C. Magnitud del efecto: Una guía para investigadores y usuarios. Rev. Psicol. 2003, 21, 147–177. [Google Scholar]
- Wilkinson, L. The History of the Cluster Heat Map. Am. Stat. Assoc. 2009, 63, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, J.N. A Postgenomic Visual Icon. Science 2008, 319, 1772–1773. [Google Scholar] [CrossRef]
- Hatzichristos, T. Delineation of demographic regions with GIS and computational intelligence. Environ. Plan. B Plan. Des. 2004, 31, 39–49. [Google Scholar] [CrossRef]
- Spielmans, S.E.; Thill, J.C. Social area analysisss, data mining, and GIS. Comput. Environ. Urban Syst. 2008, 32, 110–122. [Google Scholar] [CrossRef]
- Hamaina, R.; Leduc, T.; Moreau, G. Towards Urban Fabrics Characterization based on Buildings Footprints. In Bridging the Geographic Information Sciences; Gensel, J., Ed.; Springer: Berlin/Heidelberger, Germany, 2012; pp. 327–346. ISBN 978-3-642-29063-3. [Google Scholar]
- Yan, J.; Thill, J.C. Visual data mining in spatial interaction analysis with self-organizing maps. Environ. Plan. B Plan. Des. 2009, 36, 466–486. [Google Scholar] [CrossRef]
- Lagus, K.; Vatanen, T.; Kettunen, O.; Heikkil, A.; Heikkil, M.; Pantzar, M.; Honkela, T. Paths of wellbeing on self-organizing maps. In Advances in Self-Organizing Maps; Springer: Berlin/Heidelberger, Germany, 2013; pp. 345–352. [Google Scholar]
- Behnisch, M.; Ultsch, A. Urban data-mining: Spatiotemporal exploration of multidimensional data. Build. Res. Inf. 2009, 37, 520–532. [Google Scholar] [CrossRef]
- Slavin, M.I. Sustainability in America’s Cities: Creating the Green Metropolis; Island Press: Washington, DC, USA, 2011; ISBN 9781597267410. [Google Scholar]
- Moayedi, F.; Zakaria, R.; Bigah, Y.; Mustafar, M.; Puan, O.C.; Zin, I.S.; Klufallah, M.M.A. Conceptualising the indicators of walkability for sustainable transportation. J. Teknol. 2013, 65, 85–90. [Google Scholar] [CrossRef]
- Litman, T.A. Economic Value of Walkability. World Transp. Policy Pract. 2004, 10, 5–14. [Google Scholar] [CrossRef]
- Salganik, M.J.; Levy, K.E.C. Wiki surveys: Open and quantifiable social data collection. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Alvarez, F.J.; Mora-Esteban, R. Acuerdos colectivos mediante Wiki-encuestas para la comprensión y transformación del Paisaje Cultural de Granada. In Con la Red/En la Red: Creación, comunicación cultural y artística en la era de Internet; Downhill Publishing & Editorial Universidad de Granada: Granada, NY, USA, 2017; pp. 511–526. ISBN 9788433860101. [Google Scholar]
- Liang, J.; Chen, J.; Zhu, Y.; Yu, R. A novel Intrusion Detection System for Vehicular Ad Hoc Networks (VANETs) based on differences of traffic flow and position. Appl. Soft Comput. J. 2019, 75, 712–727. [Google Scholar] [CrossRef]
- Malondkar, A.; Corizzo, R.; Kiringa, I.; Ceci, M. Spark-GHSOM: Growing Hierarchical Self-Organizing Map for large scale mixed attribute datasets. Inf. Sci. 2019, 496, 572–591. [Google Scholar] [CrossRef]
Feature | Data Sample | Profile 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N = 459 | 100.00% | N = 78 | 16.99% | |||||||
n | M | SD | MV | n | M | SD | χ2 | Sig | OR | |
Sex: Male | 231 | 0.541 | 0.499 | 32 (6.97%) | 25 | 0.352 | 0.481 | 12.555 | *** | 0.40 |
Sex: Female | 196 | 0.459 | 0.499 | 32 (6.97%) | 46 | 0.648 | 0.481 | 10.17 | ** | 2.21 |
021. Lives with: Father and mother | 313 | 0.769 | 0.422 | 52 (11.33%) | 68 | 0.986 | 0.12 | 15.619 | *** | 3.77 |
021. Lives with: Mother or uncles | 60 | 0.147 | 0.355 | 52 (11.33%) | 1 | 0.014 | 0.12 | 11.495 | *** | 0.07 |
021. Lives with: Father | 9 | 0.022 | 0.147 | 52 (11.33%) | 0 | 0 | 0 | - | - | 0 |
021. Lives with: Father or Mother and Grandparents | 11 | 0.027 | 0.162 | 52 (11.33%) | 0 | 0 | 0 | - | - | 0 |
021. Lives with: Mather and partner | 6 | 0.015 | 0.121 | 52 (11.33%) | 0 | 0 | 0 | - | - | 0 |
021. Lives with: Grandparents | 5 | 0.012 | 0.11 | 52 (11.33%) | 0 | 0 | 0 | - | - | 0 |
021. Lives in Residence or center | 1 | 0.002 | 0.05 | 52 (11.33%) | 0 | 0 | 0 | - | - | 0 |
021. Lives Other, shared custody | 2 | 0.005 | 0.07 | 52 (11.33%) | 0 | 0 | 0 | - | - | 0 |
022. House: Isolated or semidetached | 121 | 0.293 | 0.456 | 46 (10.02%) | 8 | 0.118 | 0.325 | 12.556 | *** | 0.27 |
022. House: Block with ≤ 5 floors | 182 | 0.441 | 0.497 | 46 (10.02%) | 59 | 0.868 | 0.341 | 50.864 | *** | 6.51 |
022. House: Block with > 5 floors | 99 | 0.24 | 0.427 | 46 (10.02%) | 5 | 0.015 | 0.121 | 12.764 | *** | 0.21 |
022. House: Residence | 2 | 0.005 | 0.07 | 46 (10.02%) | 0 | 0 | 0 | - | - | 0 |
022. House: Others | 9 | 0.022 | 0.146 | 46 (10.02%) | 0 | 0 | 0 | - | - | 0 |
023. With garden or patio | 181 | 0.661 | 0.474 | 185 (40.31%) | 25 | 0.714 | 0.458 | 2.144 | ns | 0.68 |
024. With sport or game zones | 116 | 0.518 | 0.501 | 235 (51.20%) | 23 | 0.821 | 0.39 | 0.884 | ns | 1.3 |
025. With elevator | 175 | 0.559 | 0.497 | 146 (31.81%) | 34 | 0.567 | 0.5 | 1.189 | ns | 1.32 |
035. Knows neighborhood name | 250 | 0.576 | 0.495 | 25 (5.45%) | 47 | 0.644 | 0.482 | 1.27 | ns | 1.33 |
036. Activities scheduled out of class | 285 | 0.669 | 0.471 | 33 (7.19%) | 39 | 0.534 | 0.502 | 5.837 | * | 0.55 |
037. Non-scheduled activities outside class | 204 | 0.516 | 0.5 | 64 (13.94%) | 32 | 0.471 | 0.503 | 0.445 | ns | 0.85 |
051. Going to school: Non-motorized: Walking | 242 | 0.569 | 0.496 | 34 (7.41%) | 57 | 0.803 | 0.401 | 15.618 | *** | 2.88 |
051. Going to school: Non-motorized: Skating | 2 | 0.005 | 0.069 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
051. Going to school: Non-motorized: Bike | 2 | 0.005 | 0.069 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
051. Going to school: Motorized: Bus line | 8 | 0.019 | 0.136 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
051. Going to school: Motorized: School bus | 9 | 0.021 | 0.144 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
051. Going to school: Motorized: Shared car | 33 | 0.078 | 0.268 | 34 (7.41%) | 1 | 0.014 | 0.119 | 4.915 | * | 0.14 |
051. Going to school: Motorized: Motorbike | 10 | 0.024 | 0.152 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
051. Going to school: Motorized: Car | 119 | 0.28 | 0.45 | 34 (7.41%) | 13 | 0.183 | 0.39 | 4.195 | * | 0.52 |
052. Back to school: Non-motorized: Walking | 244 | 0.574 | 0.495 | 34 (7.41%) | 60 | 0.845 | 0.364 | 21.312 | *** | 3.57 |
052. Back to school: Non-motorized: Skating | 5 | 0.012 | 0.108 | 34 (7.41%) | 3 | 0 | 0 | 6.628 | * | 7.58 |
052. Back to school: Non-motorized. Bike | 3 | 0.007 | 0.084 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
052. Back to school: Motorized: Bus line | 11 | 0.026 | 0.159 | 34 (7.41%) | 3 | 0.042 | 0.203 | 0.844 | ns | 1.87 |
052. Back to school: Motorized: School bus | 11 | 0.026 | 0.159 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
052. Back to school: Motorized: Shared car | 34 | 0.08 | 0.272 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
052. Back to school: Motorized: Motorbike | 10 | 0.024 | 0.152 | 34 (7.41%) | 0 | 0 | 0 | - | - | 0 |
052. Back to school: Motorized: Car | 107 | 0.252 | 0.435 | 34 (7.41%) | 8 | 0.113 | 0.318 | 8.959 | ** | 0.33 |
053. Extracurricular activity: Yes | 139 | 0.33 | 0.471 | 38 (8.28%) | 21 | 0.304 | 0.464 | 0.503 | ns | 0.82 |
054. Going to school accompanied (adult) | 320 | 0.784 | 0.412 | 51 (11.11%) | 68 | 0.971 | 0.168 | 13.573 | *** | 3.48 |
055. Return from school accompanied | 319 | 0.769 | 0.422 | 44 (9.59%) | 64 | 0.928 | 0.261 | 6.985 | ** | 2.26 |
Feature | Total Sample | Profile 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N = 459 | 100% | N = 78 | 16.99% | |||||||
n | M | SD | MV | n | M | SD | χ2 | Sig | OR | |
061. Enjoy with people on the road | 418 | 3.42 | 71 | - | - | - | ||||
Strongly agree | 103 | 19 | 0.199 | ns | 1.14 | |||||
Agree | 87 | 11 | 1.440 | ns | 0.66 | |||||
Neither agree nor disagree | 158 | 36 | 5.729 | * | 1.82 | |||||
Disagree | 25 | 1.227 | 41 (8.93%) | 2 | 3.577 | 1.051 | 1.516 | ns | 0.41 | |
Strongly disagree | 45 | 3 | 3.772 | ns | 0.32 | |||||
062. Satisfied with the route surroundings | 423 | 3.577 | 71 | - | - | - | ||||
Strongly agree | 125 | 23 | 0.241 | ns | 1.14 | |||||
Agree | 83 | 13 | 0.127 | ns | 0.89 | |||||
Neither agree nor disagree | 149 | 1.17 | 36 (7.84%) | 26 | 3.634 | 1.198 | 0.033 | ns | 1.05 | |
Disagree | 43 | 4 | 1.99 | ns | 0.47 | |||||
Strongly disagree | 23 | 5 | 0.387 | ns | 1.38 | |||||
063. Feel autonomy in school environment | 421 | 3.297 | 71 | - | - | - | ||||
Strongly agree | 81 | 14 | 0.006 | ns | 1.03 | |||||
Agree | 92 | 11 | 3.254 | 1.155 | 2.07 | ns | 0.61 | |||
Neither agree nor disagree | 157 | 30 | 0.757 | ns | 1.25 | |||||
Disagree | 53 | 1.179 | 38 (8.28%) | 11 | 0.601 | ns | 1.33 | |||
Strongly disagree | 38 | 5 | 0.432 | ns | 0.72 | |||||
064. Satisfied with autonomy | 423 | 3.865 | 71 | - | - | - | ||||
Strongly agree | 168 | 25 | 0.838 | ns | 0.79 | |||||
Agree | 93 | 15 | 0.062 | ns | 0.92 | |||||
Neither agree nor disagree | 119 | 20 | 3.69 | 1.237 | 0.004 | ns | 0.98 | |||
Disagree | 23 | 1.143 | 36 (7.84%) | 6 | 1.419 | ns | 1.78 | |||
Strongly disagree | 20 | 5 | 0.95 | ns | 1.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abarca-Alvarez, F.J.; Campos-Sánchez, F.S.; Mora-Esteban, R. Survey Assessment for Decision Support Using Self-Organizing Maps Profile Characterization with an Odds and Cluster Heat Map: Application to Children’s Perception of Urban School Environments. Entropy 2019, 21, 916. https://doi.org/10.3390/e21090916
Abarca-Alvarez FJ, Campos-Sánchez FS, Mora-Esteban R. Survey Assessment for Decision Support Using Self-Organizing Maps Profile Characterization with an Odds and Cluster Heat Map: Application to Children’s Perception of Urban School Environments. Entropy. 2019; 21(9):916. https://doi.org/10.3390/e21090916
Chicago/Turabian StyleAbarca-Alvarez, Francisco Javier, Francisco Sergio Campos-Sánchez, and Rubén Mora-Esteban. 2019. "Survey Assessment for Decision Support Using Self-Organizing Maps Profile Characterization with an Odds and Cluster Heat Map: Application to Children’s Perception of Urban School Environments" Entropy 21, no. 9: 916. https://doi.org/10.3390/e21090916